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1 Introduction

These notes should enable the user to estimate phylogenetic trees from align-
ment data with different methods using the phangorn package [12]. Several
functions of phangorn are also described in more detail in [8]. For more
theoretical background on all the methods see e.g. [3, 16]. This document
illustrates some of the phangorn features to estimate phylogenetic trees using
different reconstruction methods. Small adaptations to the scripts in section
6 should enable the user to perform phylogenetic analyses.

2 Getting started

The first thing we have to do is to read in an alignment. Unfortunately there
exists many different file formats that alignments can be stored in. The
function read.phyDat is used to read in an alignment. There are several
functions to read in alignments depending on the format of the data set
(nexus, phylip, fasta) and the kind of data (amino acid or nucleotides) in the
ape package [7] and phangorn. The function read.phyDat calls these other
functions. For the specific parameter settings available look in the help files of
the function read.dna (for phylip, fasta, clustal format), read.nexus.data
for nexus files. For amino acid data additional read.aa is called. We start
our analysis loading the phangorn package and then reading in an alignment.
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> library(phangorn)

> fdir <- system.file("extdata/trees", package = "phangorn")

> primates <- read.phyDat(file.path(fdir, "primates.dna"), format = "phylip")

3 Distance based methods

After reading in the alignment we can build a first tree with distance based
methods. The function dist.dna from the ape package computes distances
for many DNA substitution models. To use the function dist.dna we have to
transform the data to class DNAbin. For amino acids the function dist.ml

offers common substitution models (for example ”WAG”, ”JTT”, ”LG”, ”Day-
hoff”, ”cpREV”, ”mtmam”, ”mtArt”, ”MtZoa” or ”mtREV24”).

After constructing a distance matrix we reconstruct a rooted tree with
UPGMA and alternatively an unrooted tree using Neighbor Joining [11, 14].
More distance methods like fastme are available in the ape package.

> dm <- dist.ml(primates)

> treeUPGMA <- upgma(dm)

> treeNJ <- NJ(dm)

We can plot the trees treeUPGMA and treeNJ (figure 1) with the commands:

> layout(matrix(c(1,2), 2, 1), height=c(1,2))

> par(mar = c(0,0,2,0)+ 0.1)

> plot(treeUPGMA, main="UPGMA")

> plot(treeNJ, "unrooted", main="NJ")

Distance based methods are very fast and we will use the UPGMA and NJ
tree as starting trees for the maximum parsimony and maximum likelihood
analyses.

4 Parsimony

The function parsimony returns the parsimony score, that is the number of
changes which are at least necessary to describe the data for a given tree.
We can compare the parsimony score or the two trees we computed so far:

> parsimony(treeUPGMA, primates)

[1] 751

> parsimony(treeNJ, primates)

[1] 746
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Figure 1: Rooted UPGMA tree and unrooted NJ tree
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The function optim.parsimony performs tree rearrangements to find trees
with a lower parsimony score. The tree rearrangement implemented are
nearest-neighbor interchanges (NNI) and subtree pruning and regrafting (SPR).
The later one only works so far with the fitch algorithm. However is also a
version of the parsimony ratchet [6] implemented, which is likely to find bet-
ter trees than just doing NNI / SPR rearrangements.

> treePars <- optim.parsimony(treeUPGMA, primates)

Final p-score 746 after 1 nni operations

> treeRatchet <- pratchet(primates, trace = 0)

> parsimony(c(treePars, treeRatchet), primates)

[1] 746 746

For small data sets it is also possible to find all most parsimonious trees using
a branch and bound algorithm [4]. For data sets with more than 10 taxa this
can take a long time and depends strongly on how tree like the data are.

> (trees <- bab(subset(primates,1:10)))

5 Maximum likelihood

The last method we will describe in this vignette is Maximum Likelihood
(ML) as introduced by Felsenstein [2]. We can easily compute the likelihood
for a tree given the data

> fit = pml(treeNJ, data=primates)

> fit

loglikelihood: -3074.952

unconstrained loglikelihood: -1230.335

Rate matrix:

a c g t

a 0 1 1 1

c 1 0 1 1

g 1 1 0 1

t 1 1 1 0

Base frequencies:

0.25 0.25 0.25 0.25
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The function pml returns an object of class pml. This object contains the
data, the tree and many different parameters of the model like the likelihood.
There are many generic functions for the class Robjectpml available, which
allow the handling of these objects.

> methods(class="pml")

[1] AICc BIC anova logLik plot print simSeq update vcov

see '?methods' for accessing help and source code

The object fit just estimated the likelihood for the tree it got supplied, but
the branch length are not optimized for the Jukes-Cantor model yet, which
can be done with the function optim.pml.

> fitJC <- optim.pml(fit, TRUE)

> logLik(fitJC)

With the default values pml will estimate a Jukes-Cantor model. The func-
tion update.pml allows to change parameters. We will change the model to
the GTR + Γ(4) + I model and then optimize all the parameters.

> fitGTR <- update(fit, k=4, inv=0.2)

> fitGTR <- optim.pml(fitGTR, model="GTR", optInv=TRUE, optGamma=TRUE,

+ rearrangement = "NNI", control = pml.control(trace = 0))

> fitGTR

loglikelihood: -2613.87

unconstrained loglikelihood: -1230.335

Proportion of invariant sites: 0.007783057

Discrete gamma model

Number of rate categories: 4

Shape parameter: 3.943879

Rate matrix:

a c g t

a 0.0000000 0.502426533 18.551903147 0.3100171

c 0.5024265 0.000000000 0.009311969 8.1226661

g 18.5519031 0.009311969 0.000000000 1.0000000

t 0.3100171 8.122666125 1.000000000 0.0000000

Base frequencies:

0.3844382 0.3822246 0.04014874 0.1931885

With the control parameters the threshols for the fitting process can be
changed. Here we want just to supress output during the fitting process.
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For larger trees the NNI rearrangements often get stuck in local maxima.
We added two stochatic algorithm to improve topology search. The first (set
rearrangement=”stochastic”) performs stochastic rearrangements similar as
in [5], which makes random NNI permuation to the tree, which than gets opti-
mised to escape local optima. The second option (rearrangement=”ratchet”)
perform the likelihood ratchet [15].

While these algorithms may find better trees they will also take more
time.

> fitGTR <- optim.pml(fitGTR, model="GTR", optInv=TRUE, optGamma=TRUE,

+ rearrangement = "stochastic", control = pml.control(trace = 0))

> fitGTR

loglikelihood: -2608.383

unconstrained loglikelihood: -1230.335

Proportion of invariant sites: 0.005690053

Discrete gamma model

Number of rate categories: 4

Shape parameter: 3.048177

Rate matrix:

a c g t

a 0.0000000 0.513363142 31.462068097 0.3724368

c 0.5133631 0.000000000 0.007066715 13.3094626

g 31.4620681 0.007066715 0.000000000 1.0000000

t 0.3724368 13.309462592 1.000000000 0.0000000

Base frequencies:

0.3933595 0.3791544 0.0402803 0.1872058

5.1 Model selection

We can compare nested models for the JC and GTR + Γ(4) + I model using
likelihood ratio statistic

> anova(fitJC, fitGTR)

Likelihood Ratio Test Table

Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -3068.3 25

2 -2608.4 35 10 919.82 < 2.2e-16

with the Shimodaira-Hasegawa [13] test
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> SH.test(fitGTR, fitJC)

Trees ln L Diff ln L p-value

[1,] 1 -2608.383 0.0000 0.5038

[2,] 2 -3068.295 459.9119 0.0000

or with the AIC

> AIC(fitJC)

[1] 6186.59

> AIC(fitGTR)

[1] 5286.766

> AICc(fitGTR)

[1] 5299.623

> BIC(fitGTR)

[1] 5407.402

An alternative is to use the function modelTest to compare different nu-
cleotide or protein models the AIC, AICc or BIC, similar to popular programs
ModelTest and ProtTest [9, 10, 1].

> mt = modelTest(primates)

The results of modelTest is illustrated in table 1

The thresholds for the optimization in modelTest are not as strict as for op-
tim.pml and no tree rearrangements are performed. As modelTest computes
and optimizes a lot of models it would be a waste of computer time not to
save these results. The results are saved as call together with the optimized
trees in an environment and this call can be evaluated to get a ”pml” object
back to use for further optimization or analysis.

> env <- attr(mt, "env")

> ls(envir=env)

[1] "F81" "F81+G" "F81+G+I" "F81+I"

[5] "GTR" "GTR+G" "GTR+G+I" "GTR+I"

[9] "HKY" "HKY+G" "HKY+G+I" "HKY+I"

[13] "JC" "JC+G" "JC+G+I" "JC+I"

[17] "K80" "K80+G" "K80+G+I" "K80+I"

[21] "SYM" "SYM+G" "SYM+G+I" "SYM+I"

[25] "data" "tree_F81" "tree_F81+G" "tree_F81+G+I"

[29] "tree_F81+I" "tree_GTR" "tree_GTR+G" "tree_GTR+G+I"

7



Model df logLik AIC AICw AICc AICcw BIC
JC 25.00 -3068.42 6186.83 0.00 6193.15 0.00 6273.00
JC+I 26.00 -3062.63 6177.26 0.00 6184.10 0.00 6266.87
JC+G 26.00 -3066.92 6185.83 0.00 6192.68 0.00 6275.45
JC+G+I 27.00 -3062.64 6179.28 0.00 6186.70 0.00 6272.35
F81 28.00 -2918.17 5892.33 0.00 5900.33 0.00 5988.84
F81+I 29.00 -2909.12 5876.24 0.00 5884.85 0.00 5976.20
F81+G 29.00 -2912.56 5883.12 0.00 5891.73 0.00 5983.07
F81+G+I 30.00 -2908.52 5877.04 0.00 5886.29 0.00 5980.44
K80 26.00 -2952.94 5957.89 0.00 5964.73 0.00 6047.50
K80+I 27.00 -2944.51 5943.02 0.00 5950.43 0.00 6036.08
K80+G 27.00 -2944.76 5943.53 0.00 5950.94 0.00 6036.59
K80+G+I 28.00 -2942.34 5940.68 0.00 5948.68 0.00 6037.19
HKY 29.00 -2625.04 5308.08 0.00 5316.70 0.00 5408.04
HKY+I 30.00 -2621.27 5302.54 0.00 5311.80 0.00 5405.95
HKY+G 30.00 -2612.64 5285.28 0.18 5294.54 0.45 5388.69
HKY+G+I 31.00 -2612.45 5286.89 0.08 5296.81 0.14 5393.74
SYM 30.00 -2813.90 5687.79 0.00 5697.05 0.00 5791.19
SYM+I 31.00 -2811.73 5685.46 0.00 5695.38 0.00 5792.31
SYM+G 31.00 -2804.68 5671.36 0.00 5681.28 0.00 5778.20
SYM+G+I 32.00 -2804.67 5673.34 0.00 5683.95 0.00 5783.63
GTR 33.00 -2618.62 5303.24 0.00 5314.57 0.00 5416.98
GTR+I 34.00 -2613.58 5295.16 0.00 5307.24 0.00 5412.35
GTR+G 34.00 -2607.66 5283.33 0.47 5295.41 0.29 5400.52
GTR+G+I 35.00 -2607.21 5284.43 0.27 5297.29 0.11 5405.06

Table 1: Summary table of modelTest

[33] "tree_GTR+I" "tree_HKY" "tree_HKY+G" "tree_HKY+G+I"

[37] "tree_HKY+I" "tree_JC" "tree_JC+G" "tree_JC+G+I"

[41] "tree_JC+I" "tree_K80" "tree_K80+G" "tree_K80+G+I"

[45] "tree_K80+I" "tree_SYM" "tree_SYM+G" "tree_SYM+G+I"

[49] "tree_SYM+I"

> (fit <- eval(get("HKY+G+I", env), env))

loglikelihood: -2612.446

unconstrained loglikelihood: -1230.335

Proportion of invariant sites: 0.00269351

Discrete gamma model

Number of rate categories: 4

Shape parameter: 2.123698
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Rate matrix:

a c g t

a 0.00000 1.00000 56.02004 1.00000

c 1.00000 0.00000 1.00000 56.02004

g 56.02004 1.00000 0.00000 1.00000

t 1.00000 56.02004 1.00000 0.00000

Base frequencies:

0.4205044 0.3622272 0.0438954 0.1733729

At last we may want to apply bootstrap to test how well the edges of the
tree are supported:

> bs = bootstrap.pml(fitJC, bs=100, optNni=TRUE,

+ control = pml.control(trace = 0))

Now we can plot the tree with the bootstrap support values on the edges
and also look at consensusNet to identify potential conflict.

> par(mfrow=c(2,1))

> par(mar=c(1,1,3,1))

> plotBS(midpoint(fitJC$tree), bs, p = 50, type="p")

> title("a)")

> cnet <- consensusNet(bs, p=0.2)

> plot(cnet, "2D", show.edge.label=TRUE)

> title("b)")

Several analyses, e.g. bootstrap and modelTest, can be computationally
demanding, but as nowadays most computers have several cores one can
distribute the computations using the multicore package. However it is only
possible to use this approach if R is running from command line (”X11”),
but not using a GUI (for example ”Aqua” on Macs) and unfortunately the
multicore package does not work at all under Windows.
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Figure 2: a) Unrooted tree (midpoint rooted) with bootstrap support values.
b) ConsensusNet from the bootstrap sample
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6 Appendix: Standard scripts for nucleotide

analysis

Here we provide two standard scripts which can be adapted for the most com-
mon tasks. Most likely the arguments for read.phyDat have to be adapted
to accommodate your file format. Both scripts assume that the multicore

package works on your platform, see comments above.

library(phangorn)

file="myfile"

dat = read.phyDat(file)

dm = dist.ml(dat, "F81")

tree = NJ(dm)

# as alternative for a starting tree:

tree <- pratchet(dat) # parsimony tree

tree <- nnls.phylo(tree, dm) # need edge weights

# 1. alternative: quick and dirty: GTR + G

fitStart = pml(tree, dat, k=4)

fit = optim.pml(fitStart, model="GTR", optGamma=TRUE, rearrangement="stochastic")

# 2. alternative: preper with modelTest

mt <- modelTest(dat, tree=tree, multicore=TRUE)

mt[order(mt$AICc),]

# choose best model from the table according to AICc

bestmodel <- mt$Model[which.min(mt$AICc)]

env = attr(mt, "env")

fitStart = eval(get("GTR+G+I", env), env)

# or let R search the table

fitStart = eval(get(bestmodel, env), env)

# equivalent to: fitStart = eval(get("GTR+G+I", env), env)

fit = optim.pml(fitStart, rearrangement = "stochastic",

optGamma=TRUE, optInv=TRUE, model="GTR")

bs = bootstrap.pml(fit, bs=100, optNni=TRUE, multicore=TRUE)
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7 Appendix 2: Standard scripts for amino

acid analysis

You can specify different several models build in which you can specify, e.g.
”WAG”, ”JTT”, ”Dayhoff”, ”LG”. Optimizing the rate matrix for amino acids
is possible, but would take a long, a very long time and you will need to
have a large alignement to estimate all the parameters. So make sure to set
optBf=FALSE and optQ=FALSE in the function optim.pml, which is also
the default.

library(phangorn)

file="myfile"

dat = read.phyDat(file, type = "AA")

dm = dist.ml(dat, model="JTT")

tree = NJ(dm)

# parallel will only work safely from command line

# and not at all windows

(mt <- modelTest(dat, model=c("JTT", "LG", "WAG"),

multicore=TRUE))

# run all available amino acid models

(mt <- modelTest(dat, model="all", multicore=TRUE))

fitStart = eval(get(mt$Model[which.min(mt$BIC)], env), env)

fitNJ = pml(tree, dat, model="JTT", k=4, inv=.2)

fit = optim.pml(fitNJ, rearrangement = "stochastic",

optInv=TRUE, optGamma=TRUE)

fit

bs = bootstrap.pml(fit, bs=100, optNni=TRUE, multicore=TRUE)
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8 Session Information

The version number of R and packages loaded for generating the vignette
were:

• R version 3.4.3 (2017-11-30), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 17.10

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3

• LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

• Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

• Other packages: ape 5.0, magrittr 1.5, phangorn 2.4.0, xtable 1.8-2

• Loaded via a namespace (and not attached): Matrix 1.2-11,
Rcpp 0.12.15, compiler 3.4.3, fastmatch 1.1-0, grid 3.4.3, igraph 1.1.2,
knitr 1.19, lattice 0.20-35, nlme 3.1-131, parallel 3.4.3, pkgconfig 2.0.1,
quadprog 1.5-5, tools 3.4.3
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