Package ‘Matchlt’

December 15, 2020
Version 4.1.0
Title Nonparametric Preprocessing for Parametric Causal Inference

Description Selects matched samples of the original treated and
control groups with similar covariate distributions -- can be
used to match exactly on covariates, to match on propensity
scores, or perform a variety of other matching procedures. The
package also implements a series of recommendations offered in
Ho, Imai, King, and Stuart (2007) iDOI:10.1093/pan/mpl013;.

Depends R (;= 3.1.0)

Imports backports (;= 1.1.9),
Repp (= 1.0.5)

Suggests optmatch,
Matching,
rgenoud,
nnet,
rpart,
mgcv,
CBPS (;= 0.17),
dbarts,
randomForest,
cobalt (;= 4.2.3),
boot,
Imtest,
sandwich (3= 2.5-1),
survival,
ReppProgress (;= 0.4.2),
knitr,
rmarkdown

LinkingTo Rcpp, ReppProgress
SystemRequirements C++11
Encoding UTF-8

LazyData true

License GPL (;=2)

URL https://kosukeimai.github.io/MatchIt/, https://github.com/kosukeimai/MatchIt

BugReports https://github.com/kosukeimai/MatchIt/issues
VignetteBuilder knitr

https://kosukeimai.github.io/MatchIt/
https://github.com/kosukeimai/MatchIt
https://github.com/kosukeimai/MatchIt/issues

2 add_s.weights
R topics documented:
adds.weights L 2
distance L 3
lalonde oL 7
match.data e 8
matchit L 11
method_cem 17
methodexact L L 21
method_full e 23
method_genetic L L 27
method nearest 30
method optimal L 34
method subclass L e 38
plot.matchit 41
plot.summary.matchito 43
summary.matchit oL o 45
add_s.weights Add sampling weights to a matchit object
Description
Adds sampling weights to a matchit object so that they are incorporated into balance as-
sessment and creation of the weights. This would typically only be used when an argument
to s.weights was not supplied to matchit (i.e., because they were not to be included in
the estimation of the propensity score) but sampling weights are required for generalizing
an effect to the correct population. Without adding sampling weights to the matchit ob-
ject, balance assessment tools (i.e., summary.matchit and plot.matchit) will not calculate
balance statistics correctly, and the weights produced by match.data and get_matches will
not incorporate the sampling weights.
Usage
add_s.weights(m, s.weights = NULL, data = NULL)
Arguments
m a matchit object; the output of a call to matchit, typically with the
s.weights argument unspecified.
s.weights an numeric vector of sampling weights to be added to the matchit object.
Can also be specified as a string containing the name of variable in data
to be used or a one-sided formula with the variable on the right-hand side
(e.g., = SW).
data a data frame containing the sampling weights if given as a string or for-

mula. If unspecified, add_s.weights will attempt to find the dataset using
the environment of the matchit object.

distance 3

Value

a matchit object with an s.weights component containing the supplied sampling weights.
The nn component containing the sample sizes before and after matching will be adjusted
to incorporate the sampling weights. If s.weights = NULL, the original matchit object is
returned.

Author(s)
Noah Greifer

See Also

matchit; match.data

Examples

data("lalonde")

Generate random sampling weights, just
for this example
sw <- rchisq(nrow(lalonde), 2)

NN PS match using logistic regression PS that doesn't

include sampling weights

m.out <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde)

m.out

Add s.weights to the matchit object
m.out <- add_s.weights(m.out, sw)

m.out #note additional output
Check balance; note that sample sizes incorporate

s.weights
summary(m.out, improvement = FALSE)

distance Propensity scores and other distance measures

Description

Several matching methods require or can involve the distance between treated and control
units. Options include the Mahalanobis distance, propensity score distance, or distance
between user-supplied values. Propensity scores are also used for common support via the
discard options and for defined calipers. This page documents the options that can be
supplied to the distance argument to matchit.

There are two ways to specify the distance argument: 1) as the string "mahalanobis”, 2)
as a string containing the name of a method for estimating propensity scores, or 3) as a
vector of values whose pairwise differences define the distance between units.

When distance is specified as one of the allowed strings (described below) other than
"mahalanobis”, a propensity score is estimated using the variables in formula and the

4 distance

method corresponding to the given argument. This propensity score can be used to compute
the distance between units as the absolute difference between the propensity scores of pairs
of units. In this respect, the propensity score is more like a ”position” measure than a
distance measure, since it is the pairwise difference that form the distance rather than
the propensity scores themselves. Still, this naming convention is used to reflect their
primary purpose without committing to the status of the estimated values as propensity
scores, since transformations of the scores are allowed and user-supplied values that are not
propensity scores can also be supplied (detailed below). Propensity scores can also be used
to create calipers and common support restrictions, whether or not they are used in the
actual distance measure used in the matching, if any.

In addition to the distance argument, two other arguments can be specified that relate to
the estimation and manipulation of the propensity scores. The link argument allows for
different links to be used in models that require them such as generalized linear models, for
which the logit and probit links are allowed, among others. In addition to specifying the
link, the 1ink argument can be used to specify whether the propensity score or the linearized
version of the propensity score should be used; by specifying link = "linear.{link}", the
linearized version will be used.

The distance.options argument can also be specified, which should be a list of values
passed to the propensity score-estimating function, for example, to choose specific options or
tuning parameters for the estimation method. If formula, data, or verbose are not supplied
to distance.options, the corresponding arguments from matchit will be automatically
supplied. See the Examples for demonstrations of the uses of link and distance.options.
When s.weights is supplied in the call to matchit, it will automatically be passed to the
propensity score-estimating function as the weights argument unless otherwise described
below.

Allowable options

Below are the allowed options for distance:

"glm" The propensity scores are estimated using a generalized linear model (e.g., logistic re-
gression). The formula supplied to matchit is passed directly to glm, and predict.glm
is used to compute the propensity scores. The link argument can be specified as a
link function supplied to binomial, e.g., "logit”, which is the default. When link is
prepended by "linear.”, the linear predictor is used instead of the predicted proba-
bilities. distance = "glm" with link = "logit"” (logistic regression) is the default in
matchit.

"gam” The propensity scores are estimated using a generalized additive model. The formula
supplied to matchit is passed directly to mgcv: :gam, and mgcv: :predict. gam is used to
compute the propensity scores. The link argument can be specified as a link function
supplied to binomial, e.g., "logit"”, which is the default. When link is prepended
by "linear.", the linear predictor is used instead of the predicted probabilities. Note
that unless the smoothing functions s, te, ti, or t2 are used in formula, a generalized
additive model is identical to a generalized linear model and will estimate the same
propensity scores as glm. See the documentation for mgcv: :gam, mgev: : formula.gam,
and mgcv: :gam.models for more information on how to specify these models. Also note
that the formula returned in the matchit output object will be a simplified version of
the supplied formula with smoothing terms removed (but all named variables present).

"rpart” The propensity scores are estimated using a classification tree. The formula sup-
plied to matchit is passed directly to rpart::rpart, and rpart::predict.rpart is
used to compute the propensity scores. The link argument is ignored, and predicted
probabilities are always returned as the distance measure.

distance 5

"randomforest” The propensity scores are estimated using a random forest. The formula
supplied to matchit is passed directly to randomForest: : randomForest, and randomForest: :predict.rand
is used to compute the propensity scores. The 1ink argument is ignored, and predicted
probabilities are always returned as the distance measure. When s.weights is sup-
plied to matchit, it will not be passed to randomForest because randomForest does
not accept weights.

"nnet” The propensity scores are estimated using a single-hidden-layer neural network.
The formula supplied to matchit is passed directly to nnet::nnet, and fitted is
used to compute the propensity scores. The link argument is ignored, and predicted
probabilities are always returned as the distance measure. An argument to size must
be supplied to distance.options when using method = "nnet”.

"cbps” The propensity scores are estimated using the covariate balancing propensity score
(CBPS) algorithm, which is a form of logistic regression where balance constraints
are incorporated to a generalized method of moments estimation of of the model
coefficients. The formula supplied to matchit is passed directly to CBPS::CBPS, and
fitted is used to compute the propensity scores. The link argument can be specified
as "linear” to use the linear predictor instead of the predicted probabilities. No other
links are allowed. The estimand argument supplied to matchit will be used to select
the appropriate estimand for use in defining the balance constraints, so no argument
needs to be supplied to ATT in CBPS.

"bart” The propensity scores are estimated using Bayesian additive regression trees (BART).
The formula supplied to matchit is passed directly to dbarts: :bart2, and dbarts::fitted
is used to compute the propensity scores. The link argument can be specified as
"linear” to use the linear predictor instead of the predicted probabilities. When
s.weights is supplied to matchit, it will not be passed to bart2 because the weights
argument in bart2 does not correspond to sampling weights.

"mahalanobis” No propensity scores are estimated. Rather than using the propensity score
difference as the distance between units, the Mahalanobis distance is used instead.
See mahalanobis for details on how it is computed. The Mahalanobis distance is
always computed using all the variables in formula. With this specification, calipers
and common support restrictions cannot be used and the distance component of the
output object will be empty because no propensity scores are estimated. The 1ink and
distance.options arguments are ignored. See individual methods pages for whether
the Mahalanobis distance is allowed and how it is used. Sometimes this setting is just
a placeholder to indicate that no propensity score is to be estimated (e.g., with method
= "genetic"”). To perform Mahalanobis distance matching and estimate propensity
scores to be used for a purpose other than matching, the mahvars argument should
be used along with a different specification to distance. See the individual matching
method pages for details on how to use mahvars.

distance can also be supplied as a numeric vector whose values will be taken to function
like propensity scores; their pairwise difference will define the distance between units. This
might be beneficial to supply propensity scores computed outside matchit or to resupply
matchit with propensity scores estimated before without having to recompute them. When
distance is a supplied as a numeric vector, link and distance.options are ignored.

Outputs

When specifying an argument to distance that estimates a propensity score, the output
of the function called to estimate the propensity score (e.g., the glm object when distance
= "glm") will be included in the matchit output object in the model component. When

6 distance

distance is anything other than "mahalanobis”, the estimated or supplied distance mea-
sures will be included in the matchit output object in the distance component.

Note

In versions of Matchlt prior to 4.0.0, distance was specified in a slightly different way.
When specifying arguments using the old syntax, they will automatically be converted to
the corresponding method in the new syntax but a warning will be thrown. distance =
"logit"”, the old default, will still work in the new syntax, though distance = "glm",1link
= "logit" is preferred (note that these are the default settings and don’t need to be made
explicit).

Examples

data("lalonde")
Linearized probit regression PS:
m.out1l <- matchit(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,
distance = "glm", link = "linear.probit")

GAM logistic PS with smoothing splines (s()):
m.out2 <- matchit(treat = s(age) + s(educ) + race + married +
nodegree + re74 + re75, data = lalonde,
distance = "gam")
summary (m.out2$model)

CBPS for ATC matching w/replacement, using the just-
identified version of CBPS (setting method = "exact”):
m.out3 <- matchit(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,
distance = "cbps"”, estimand = "ATC",
distance.options = list(method = "exact"),
replace = TRUE)

**

Mahalanobis distance matching - no PS estimated
m.out4 <- matchit(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,
distance = "mahalanobis")

m.out4$distance #NULL

Mahalanobis distance matching with PS estimated
for use in a caliper; matching done on mahvars
m.out5 <- matchit(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,
distance = "glm", caliper = .1,
mahvars = 7 age + educ + race + married +
nodegree + re74 + re75)

H

summary(m.out5)

User-supplied propensity scores
p.score <- fitted(glm(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,
family = binomial))

m.outé <- matchit(treat ™ age + educ + race + married +

lalonde 7

nodegree + re74 + re75, data = lalonde,
distance = p.score)

lalonde Data from National Supported Work Demonstration and PSID,
as analyzed by Dehejia and Wahba (1999).

Description

This is a subsample of the data from the treated group in the National Supported Work
Demonstration (NSW) and the comparison sample from the Population Survey of Income
Dynamics (PSID). This data was previously analyzed extensively by Lalonde (1986) and
Dehejia and Wahba (1999).

Usage
data(lalonde)

Format

A data frame with 614 observations (185 treated, 429 control). There are 9 variables
measured for each individual.

e "treat” is the treatment assignment (1=treated, O=control).

e "age” is age in years.

e “educ” is education in number of years of schooling.

e "race” is the individual’s race/ethnicity, (Black, Hispanic, or White). Note previous
versions of this dataset used indicator variables black and hispan instead of a single
race variable.

e "married” is an indicator for married (1=married, O=not married).

e "nodegree” is an indicator for whether the individual has a high school degree (1=no
degree, 0=degree).

e "re74” is income in 1974, in U.S. dollars.
e 7re75” is income in 1975, in U.S. dollars.
e "re78” is income in 1978, in U.S. dollars.

7treat” is the treatment variable, "re78” is the outcome, and the others are pre-treatment
covariates.

References

Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with
experimental data. American Economic Review 76: 604-620.

Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-
Evaluating the Evaluation of Training Programs. Journal of the American Statistical As-
sociation 94: 1053-1062.

8 match.data
match.data Construct a matched dataset from a matchit object
Description
match.data and get_matches create a data frame with additional variables for the distance
measure, matching weights, and subclasses after matching. This dataset can be used to
estimate treatment effects after matching or subclassification. get_matches is most useful
after matching with replacement; otherwise, match.data is more flexible. See Details below
for the difference between them.
Usage
match.data(object, group = "all"”, distance = "distance”,
weights = "weights"”, subclass = "subclass”,
data = NULL, include.s.weights = TRUE,
drop.unmatched = TRUE)
get_matches(object, distance = "distance”,
weights = "weights"”, subclass = "subclass”,
id = "id", data = NULL, include.s.weights = TRUE)
Arguments

object a matchit object; the output of a call to matchit.

group which group should comprise the matched dataset: "all” for all units,
"treated"” for just treated units, or "control” for just control units. De-
fault is "all".

distance a string containing the name that should be given to the variable contain-
ing the distance measure in the data frame output. Default is "distance”,
but "prop.score” or similar might be a good alternative if propensity
scores were used in matching. Ignored if a distance measure was not
supplied or estimated in the call to matchit.

weights a string containing the name that should be given to the variable contain-
ing the matching weights in the data frame output. Default is "weights”.

subclass a string containing the name that should be given to the variable contain-
ing the subclasses or matched pair membership in the data frame output.
Default is "subclass”.

id a string containing the name that should be given to the variable contain-
ing the unit IDs in the data frame output. Default is "id". Only used
with get_matches; for match.data, the units IDs are stored in the row
names of the returned data frame.

data a data frame containing the original dataset to which the computed output

variables (distance, weights, and/or sublcass) should be appended. If
empty, match.data will attempt to find the dataset using the environment
of the matchit object, which can make this unreliable if match.data is
used in a fresh R session or environment different from the original calling
environment (e.g., inside a function) or if the original dataset changed
between calling matchit and match.data. It is always safest to supply

match.data 9

a data frame, which should have as many rows as and be in the same
order as the data in the original call to matchit(). The same goes for
get_matches, which calls match.data internally.

include.s.weights
logical; whether to multiply the estimated weights by the sampling
weights supplied to matchit(), if any. Default is TRUE. If FALSE, the
weights in the match.data or get_matches output should be multiplied by
the sampling weights before being supplied to the function estimating the
treatment effect in the matched data.

drop.unmatched logical; whether the returned data frame should contain all units (FALSE)
or only units that were matched (i.e., have a matching weight greater than
zero) (TRUE). Default is TRUE to drop unmatched units.

Details

match.data creates a dataset with one row per unit. It will be identical to the dataset
supplied except that several new columns will be added containing information related to
the matching. When drop.unmatched = TRUE, the default, units with weights of zero, which
are those units that were discarded by common support or the caliper or were simply not
matched, will be dropped from the dataset, leaving only the subset of matched units. The
idea is for the output of match.data to be used as the dataset input in calls to glm or
similar to estimate treatment effects in the matched sample. It is important to include the
weights in the estimation of the effect and its standard error. The subclass column, when
created, contains par or subclass membership and should be used to estimate the effect and
its standard error. Subclasses will only be included if there is a subclass component in
the matchit object, which does not occur with matching with replacement, in which case
get_matches should be used. See vignette(”estimating-effects") for information on how
to use match.data output to estimate effects.

get_matches is similar to match.data; the primary difference occurs when matching is per-
formed with replacement, i.e., when units do not belong to a single matched pair. In this
case, the output of get_matches will be a dataset that contains one row per unit for each
pair they are a part of. For example, if matching was performed with replacement and
a control unit was matched to two treated units, that control unit will have two rows in
the output dataset, one for each pair it is a part of. Weights are computed for each row,
and are equal to the inverse of the number of control units in each control unit’s subclass.
Unmatched units are dropped. An additional column with unit IDs will be created (named
using the id argument) to identify when the same unit is present in multiple rows. This
dataset structure allows for the inclusion of both subclass membership and repeated use of
units, unlike the output of match.data, which lacks subclass membership when matching is
done with replacement. A match.matrix component of the matchit object must be present
to use get_matches; in some forms of matching, it is absent, in which case match.data
should be used instead. See vignette("estimating-effects”) for information on how to
use get_matches output to estimate effects after matching with replacement.

Value

A data frame containing the data supplied in the data argument or in the original call
to matchit with the computed output variables appended as additional columns, named
according the arguments above. For match.data, the group and drop.unmatched arguments
control whether only subsets of the data are returned. See Details above for how match.data
and get_matches differ. Note that get_matches sorts the data by subclass and treatment
status, unlike match.data, which uses the order of the data.

10

match.data

The returned data frame will contain the variables in the original data set or dataset
supplied to data, and the following columns:

distance

weights

subclass

id

The propensity score, if estimated or supplied to the distance argument
in matchit().

The computed matching weights. These must be used in effect estimation
to correctly incorporate the matching.

Matching strata membership. Units with the same value are in the same
stratum.

The ID of each unit, corresponding to the row names in the original
data or dataset supplied to data. Only included in get_matches output.
This column can be used to identify which rows belong to the same unit
since the same unit may appear multiple times if reused in matching with
replacement.

These columns will take on the name supplied to the corresponding arguments in the call to
match.data or get_matches. See Examples for an example of rename the distance column

to "prop.score”.

If data or the original dataset supplied to matchit was a data.table or tbl, the match.data
output will have the same class, but the get_matches output will always be a base R

data.frame.

See Also

matchit

vignette("estimating-effects"”) for uses of match.data() and get_matches() in estimat-
ing treatment effects.

Examples

data("lalonde")

4:1 matching w/replacement

m.outl <- matchit(treat

age + educ + married +
race + nodegree + re74 + re75,

data = lalonde, replace = TRUE,

caliper = .05, ratio = 4)

m.datal <- match.data(m.outl, data = lalonde,

distance = "prop.score")

dim(m.datal) #one row per matched unit

head(m.datal, 10)

g.matches1 <- get_matches(m.outl, data = lalonde,

distance = "prop.score”)

dim(g.matches1) #multiple rows per matched unit
head(g.matches1, 10)

matchit 11

matchit Matching for Causal Inference

Description

matchit is the main function of Matchlt and performs pairing, subset selection, and sub-
classification with the aim of creating treatment and control groups balanced on included
covariates. Matchlt implements the suggestions of Ho, Imai, King, and Stuart (2007) for
improving parametric statistical models by preprocessing data with nonparametric match-
ing methods. Matchlt implements a wide range of sophisticated matching methods, making
it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but com-
monly made, statistical modeling assumptions. The software also easily fits into existing
research practices since, after preprocessing with Matchlt, researchers can use whatever
parametric model they would have used without Matchlt, but produce inferences with
substantially more robustness and less sensitivity to modeling assumptions.

This page documents the overall use of matchit, but for specifics of how matchit works
with individual matching methods, see the individual pages linked in the Details section
below.

Usage

matchit(formula, data = NULL, method = "nearest”,
distance = "glm", link = "logit”,
distance.options = list(), estimand = "ATT",
exact = NULL, mahvars = NULL, discard = "none"”,
reestimate = FALSE, s.weights = NULL,
replace = FALSE, m.order = NULL,
caliper = NULL, std.caliper = TRUE, ratio =1,
verbose = FALSE, ...)

S3 method for class 'matchit'

print(x, ...)
Arguments

formula a two-sided formula object containing the treatment and covariates to be
used in creating the distance measure used in the matching. This formula
will be supplied to the functions that estimate the distance measure. The
formula should be specified as A ~ X1 + X2 + ... where A represents the
treatment variable and X1 and X2 are covariates.

data a data frame containing the variables named in formula and possible
other arguments. If not found in data, the variables will be sought in the
environment.

method the matching method to be used. The allowed methods are "nearest” for

nearest neighbor matching (on the propensity score by default), "optimal”
for optimal pair matching, "full” for optimal full matching, "genetic"
for genetic matching, "cem” for coarsened exact matching, "exact"” for
exact matching, and "subclass” for subclassification. When set to NULL,

12

distance

link

matchit

no matching will occur, but propensity score estimation and common sup-
port restrictions will still occur if requested. See the linked pages for each
method for more details on what these methods do, how the arguments
below are used by each on, and what additional arguments are allowed.

the distance measure to be used. Can be either a string containing the
name of a distance measure or a vector of already-computed distance mea-
sures. The distance measures should be values whose pairwise difference
is the distance between two units, e.g., propensity scores for propensity
score matching. See distance for allowable options. The default is "glm"
for propensity scores estimated with logistic regression using glm. Ig-
nored for some methods; see individual methods pages for information on
whether and how the distance measure is used.

when distance is specified as a string, an additional argument controlling
the link function used in estimating the distance measure. Allowable
options depend on the specific distance value specified. See distance
for allowable options with each option. The default is "logit"”, which,
along with distance = "glm”, identifies the default measure as logistic
regression propensity scores.

distance.options

estimand

exact

mahvars

discard

reestimate

a named list containing additional arguments supplied to the function
that estimates the distance measure as determined by the argument to
distance. See distance for an example of its use.

a string containing the name of the target estimand desired. Can be one
of "ATT" or "ATC"”. Some methods accept "ATE" as well. Default is "ATT".
See Details and the individual methods pages for information on how this
argument is used.

for methods that allow it, for which variables exact matching should take
place. Can be specified as a string containing the names of variables in
data to be used or a one-sided formula with the desired variables on the
right-hand side (e.g., ~ X3 + X4). See the individual methods pages for
information on whether and how this argument is used.

for methods that allow it, on which variables Mahalanobis distance match-
ing should take place when a distance measure other than "mahalanobis”
is used. Usually used to perform Mahalanobis distance matching within
propensity score calipers, where the propensity scores are computed us-
ing formula and distance. Can be specified as a string containing the
names of variables in data to be used or a one-sided formula with the
desired variables on the right-hand side (e.g., ~ X3 + X4). See the individ-
ual methods pages for information on whether and how this argument is
used.

a string containing a method for discarding units outside a region of
common support. When a propensity score is estimated or supplied to
distance, the options are "none”, "treated”, "control”, or "both". For
"none”, no units are discarded for common support. Otherwise, units
whose propensity scores fall outside the corresponding region are dis-
carded. Can also be a logical vector where TRUE indicates the unit is to
be discarded. Default is "none” for no common support restriction. See
Details.

if discard is not "none” and propensity scores are estimated, whether
to re-estimate the propensity scores in the remaining sample. Default is
FALSE to use the propensity scores estimated in the original sample.

matchit 13

s.weights an optional numeric vector of sampling weights to be incorporated into
propensity score models and balance statistics. Can also be specified as
a string containing the name of variable in data to be used or a one-
sided formula with the variable on the right-hand side (e.g., ~ SW). Not all
propensity score models accept sampling weights; see distance for infor-
mation on which do and do not, and see vignette("sampling-weights")
for details on how to use sampling weights in a matching analysis.

replace for methods that allow it, whether matching should be done with replace-
ment (TRUE), where control units are allowed to be matched to several
treated units, or without replacement (FALSE), where control units can
only be matched to one treated unit each. See the individual methods
pages for information on whether and how this argument is used. Default
is FALSE for matching without replacement.

m.order for methods that allow it, the order that the matching takes place. Al-
lowable options depend on the matching method but include "largest”,
where matching takes place in descending order of distance measures;
"smallest”, where matching takes place in ascending order of distance
measures; "random”, where matching takes place in a random order; and
"data” where matching takes place based on the order of units in the
data. When m.order = "random”, results may differ across different runs
of the same code unless a seed is set and specified with set.seed. See
the individual methods pages for information on whether and how this
argument is used. The default of NULL corresponds to "largest” when a
propensity score is estimated or supplied and "data” otherwise.

caliper for methods that allow it, the width(s) of the caliper(s) to use in match-
ing. Should be a numeric vector with each value named according to the
variable to which the caliper applies. To apply to the distance measure,
the value should be unnamed. See the individual methods pages for in-
formation on whether and how this argument is used. The default is NULL
for no caliper.

std.caliper logical; when a caliper is specified, whether the the caliper is in stan-
dard deviation units (TRUE) or raw units (FALSE). Can either be of length
1, applying to all calipers, or of length equal to the length of caliper.
Default is TRUE.

ratio for methods that allow it, how many control units should be matched to
each treated unit in k:1 matching. Should be a single integer value. See
the individual methods pages for information on whether and how this
argument is used. The default is 1 for 1:1 matching.

verbose logical; whether information about the matching process should be printed
to the console. What is printed depends on the matching method. Default
is FALSE for no printing other than warnings.

additional arguments passed to the functions used in the matching pro-
cess. See the individual methods pages for information on what additional
arguments are allowed for each method. Ignored for print.

X a matchit object.

Detalils
Details for the various matching methods can be found at the following help pages:

e method_nearest for nearest neighbor matching

14

matchit

e method_optimal for optimal pair matching
e method_full for optimal full matching

e method_genetic for genetic matching

e method_cem for coarsened exact matching
e method_exact for exact matching

e method_subclass for subclassification

The pages contain information on what the method does, which of the arguments above
are allowed with them and how they are interpreted, and what additional arguments can
be supplied to further tune the method. Note that the default method with no arguments
supplied other than formula and data is 1:1 nearest neighbor matching without replacement
on a propensity score estimated using a logistic regression of the treatment on the covariates.
This is not the same default offered by other matching programs, such as those in Matching,
teffects in Stata, or PROC PSMATCH in SAS, so care should be taken if trying to replicate
the results of those programs.

When method = NULL, no matching will occur, but any propensity score estimation and
common support restriction will. This can be a simple way to estimate the propensity
score for use in future matching specifications without having to reestimate it each time.
The matchit output with no matching can be supplied to summary to examine balance prior
to matching on any of the included covariates and on the propensity score if specified. All
arguments other than distance, discard, and reestimate will be ignored.

See the distance argument for details on the several ways to specify the distance and link
arguments to estimate propensity scores and create distance measures.

When the treatment variable is not a @/1 variable, it will be coerced to one and returned
as such in the matchit output (see section Value, below). The following rules are used: 1)
if @ is one of the values, it will be considered the control and the other value the treated;
otherwise, 2) if the variable is a factor, levels(treat)[1] will be considered control and
the other variable the treated; otherwise, 3) sort(unique(treat))[1] will be considered
control and the other value the treated. It is safest to ensure the treatment variable is a
@/1 variable.

The discard option implements a common support restriction. It can only be used when
a distance measure is estimated or supplied, i.e., when distance is specified as something
other than "mahalanobis”, and is ignored for some matching methods. When specified as
"treated"”, treated units whose distance measure is outside the range of distance measures
of the control units will be discarded. When specified as "control”, control units whose
distance measure is outside the range of distance measures of the treated units will be
discarded. When specified as "both”, treated and controls units whose distance measure is
outside the intersection of the range of distance measures of the treated units and the range
of distance measures of the control units will be discarded. When reestimate = TRUE and
distance corresponds to a propensity score-estimating function, the propensity scores are
re-estimated in the remaining units prior to being used for matching or calipers.

Caution should be used when interpreting effects estimated with various values of estimand.
Setting estimand = "ATT" doesn’t necessarily mean the average treatment effect in the
treated is being estimated; it just means that for matching methods, treated units will
be untouched and given weights of 1 and control units will be matched to them (and the
opposite for estimand = "ATC"). If a caliper is supplied or treated units are removed for
common support or some other reason (e.g., lacking matches when using exact matching),
the actual estimand targeted is not the ATT but the treatment effect in the matched sam-
ple. The argument to estimand simply triggers which units are matched to which, and for
stratification-based methods (exact matching, CEM, full matching, and subclassification),
determines the formula used to compute the stratification weights.

matchit 15

How Matching Weights Are Computed: Matching weights are computed in one of
two ways depending on whether matching was done with replacement or not.

For matching without replacement, each unit is assigned to a subclass, which represents
the pair they are a part of (in the case of k:1 matching) or the stratum they belong to (in
the case of exact matching, coarsened exact matching, full matching, or subclassification).
The formula for computing the weights depends on the argument supplied to estimand.
A new stratum ”propensity score” (p) is computed as the proportion of units in each
stratum that are in the treated group, and all units in that stratum are assigned that
propensity score. Weights are then computed using the standard formulas for inverse
probability weights: for the ATT, weights are 1 for the treated units and p/(1-p) for the
control units; for the ATC, weights are (1-p)/p for the treated units and 1 for the control
units; for the ATE, weights are 1/p for the treated units and 1/(1-p) for the control units.
For matching with replacement, units are not assigned to unique strata. For the ATT,
each treated unit gets a weight of 1. Each control unit is weighted as the sum of the inverse
of the number of control units matched to the same treated unit across its matches. For
example, if a control unit was matched to a treated unit that had two other control units
matched to it, and that same control was matched to a treated unit that had one other
control unit matched to it, the control unit in question would get a weight of 1/3 + 1/2
= 5/6. For the ATC, the same is true with the treated and control labels switched. The
weights are computed using the match.matrix component of the matchit output object.
In each treatment group, weights are divided by the mean of the nonzero weights in that
treatment group to make the weights sum to the number of units in that treatment group.
If sampling weights are included through the s.weights argument, they will be included in
the matchit output object but not incorporated into the matching weights. match.data,
which extracts the matched set from a matchit object, combines the matching weights
and sampling weights.

Value

When method is something other than "subclass”, a matchit object with the following
components:

match.matrix a matrix containing the matches. The rownames correspond to the treated
units and the values in each row are the names (or indices) of the control
units matched to each treated unit. When treated units are matched to
different numbers of control units (e.g., with exact matching or matching
with a caliper), empty spaces will be filled with NA. Not included when
method is "full”, "cem”, or "exact".

subclass a factor containing matching pair/stratum membership for each unit. Un-
matched units will have a value of NA. Not included when replace = TRUE.

weights a numeric vector of estimated matching weights. Unmatched and dis-
carded units will have a weight of zero.

model the fit object of the model used to estimate propensity scores when distance
is specified and not "mahalanobis"” or a numeric vector. When reestimate
= TRUE, this is the model estimated after discarding units.

X a data frame of covariates mentioned in formula, exact, and mahvars.
call the matchit() call.

info information on the matching method and distance measures used.
estimand the argument supplied to estimand.

formula the formula supplied.

16 matchit

treat a vector of treatment status converted to zeros (0) and ones (1) if not
already in that format.

distance a vector of distance values (i.e., propensity scores) when distance is spec-
ified and not "mahalanobis”.

discarded a logical vector denoting whether each observation was discarded (TRUE)
or not (FALSE) by the argument to discard.

s.weights the vector of sampling weights supplied to the s.weights argument, if
any.

exact a one-sided formula containing the variables, if any, supplied to exact.

mahvars a one-sided formula containing the variables, if any, supplied to mahvars.

nn a matrix of the sample sizes of the treated and control groups before and

after matching. See summary.matchit for details.

When method = "subclass”, a matchit.subclass object with the same components as
above except that match.matrix is excluded and two additional components, g.cut and
gn, are included, containing a vector of the distance measure cutpoints used to define the
subclasses and a matrix of the subclass sample sizes, respectively. See method_subclass for
details.

Author(s)
Daniel Ho <dho@law. stanford. edu>; Kosuke Imai <imai@harvard.edu>; Gary King <king@harvard.edu>;
Elizabeth Stuart <estuart@jhsph.edu>
Version 4.0.0 update by Noah Greifer <noah.greifer@gmail.com>

References

Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2007). Matching as Nonparametric Prepro-
cessing for Reducing Model Dependence in Parametric Causal Inference. Political Analysis,
15(3), 199-236. doi: 10.1093/pan/mpl013

Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchlIt: Nonparametric Preprocess-
ing for Parametric Causal Inference. Journal of Statistical Software, 42(8). doi: 10.18637/
j88.v042.108

See Also

summary.matchit for balance assessment after matching. plot.matchit for plots of covariate
balance and propensity score overlap after matching.

vignette("MatchIt”) for an introduction to matching with Matchlt; vignette("matching-methods")

for descriptions of the variety of matching methods and options available; vignette(”assessing-balance")
for information on assessing the quality of a matching specification; vignette("estimating-effects”)

for instructions on how to estimate treatment effects after matching; and vignette(”sampling-weights")
for a guide to using Matchlt with sampling weights.

Examples

data("lalonde")

Default: 1:1 NN PS matching w/o replacement

m.outl <- matchit(treat ™ age + educ + race + nodegree +
married + re74 + re75, data = lalonde)

https://doi.org/10.1093/pan/mpl013
https://doi.org/10.18637/jss.v042.i08
https://doi.org/10.18637/jss.v042.i08

method_cem 17

m.out1
summary(m.out1)

1:1 NN Mahalanobis distance matching w/ replacement and

exact matching on married and race

m.out2 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
distance = "mahalanobis”, replace = TRUE,
exact = ~ married + race)

m.out?2

summary(m.out2)

2:1 NN Mahalanobis distance matching within caliper defined

by a probit pregression PS

m.out3 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
distance = "glm", link = "probit”,
mahvars = ~ age + educ + re74 + re75,
caliper = .1, ratio = 2)

m.out3

summary(m.out3)

Optimal full PS matching for the ATE within calipers on

PS, age, and educ

m.out4 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "full”, estimand = "ATE",
caliper = c(.1, age = 2, educ = 1),
std.caliper = c(TRUE, FALSE, FALSE))

m.out4

summary (m.out4)

Subclassification on a logistic PS with 10 subclasses after

discarding controls outside common support of PS

s.outl <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,

method = "subclass”, distance = "glm",
discard = "control”, subclass = 10)
s.outl
summary(s.out1)
method_cem Coarsened Eract Matching

Description

In matchit, setting method = "cem” performs coarsened exact matching. With coarsened
exact matching, covariates are coarsened into bins, and a complete cross of the coarsened
covariates is used to form subclasses defined by each combination of the coarsened covariate
levels. Any subclass that doesn’t contain both treated and control units is discarded,

18 method_cem

leaving only subclasses containing treatment and control units that are exactly equal on
the coarsened covariates. The coarsening process can be controlled by an algorithm or by
manually specifying cutpoints and groupings. The benefits of coarsened exact matching are
that the tradeoff between exact matching and approximate balancing can be managed to
prevent discarding too many units, which can otherwise occur with exact matching.

This page details the allowable arguments with method = "cem”. See matchit for an expla-
nation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for coarsened exact matching:

matchit(formula, data = NULL, method = "cem”,
estimand = "ATT", s.weights = NULL,

verbose = FALSE, ...)
Arguments

formula a two-sided formula object containing the treatment and covariates to be
used in creating the subclasses defined by a full cross of the coarsened
covariate levels.

data a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.

method set here to "cem".

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". The estimand controls how the weights are computed;
see the Computing Weights section at matchit for details. When k2k =
TRUE (see below), estimand also controls how the matching is done.

s.weights the variable containing sampling weights to be incorporated into balance
statistics. These weights do not affect the matching process.

verbose logical; whether information about the matching process should be printed

to the console.
additional arguments to control the matching process.

grouping a named list with an (optional) entry for each categorical vari-
able to be matched on. Each element should itself be a list, and each
entry of the sublist should be a vector containing levels of the variable
that should be combined to form a single level. Any categorical vari-
ables not included in grouping will remain as they are in the data,
which means exact matching, with no coarsening, will take place on
these variables. See Details.

cutpoints a named list with an (optional) entry for each numeric vari-
able to be matched on. Each element describes a way of coarsening
the corresponding variable. They can be a vector of cutpoints that
demarcate bins, a single number giving the number of bins, or a
string corresponding to a method of computing the number of bins.
Allowable strings include "sturges”, "scott”, and "fd", which use
the functions nclass.Sturges, nclass.scott, and nclass.FD, respec-
tively. The default is "sturges” for variables that are not listed or if
no argument is supplied. Can also be a single value to be applied to
all numeric variables. See Details.

k2k codelogical; whether 1:1 matching should occur within the matched
strata. If TRUE nearest neighbor matching without replacement will
take place within each stratum, and any unmatched units will be

method_cem 19

dropped (e.g., if there are more treated than control units in the
stratum, the treated units without a match will be dropped). The
k2k.method argument controls how the distance between units is cal-
culated.

k2k.method character; how the distance between units should be calcu-
lated if k2k = TRUE. Allowable arguments include NULL (for random
matching), "mahalanobis” (for Mahalanobis distance matching), or
any allowable argument to method in dist. Matching will take place
on scaled versions of the original (non-coarsened) variables. The de-
fault is "mahalanobis”.

mpower if k2k.method = "minkowski"”, the power used in creating the dis-
tance. This is passed to the p argument of dist.

The arguments distance (and related arguments), exact, mahvars, discard
(and related arguments), replace, m.order, caliper (and related argu-
ments), and ratio are ignored with a warning.

Details

If the coarsening is such that there are no exact matches with the coarsened variables,
the grouping and cutpoints arguments can be used to modify the matching specification.
Reducing the number of cutpoints or grouping some variable values together can make it
easier to find matches. See Examples below. Removing variables can also help (but they
will likely not be balanced unless highly correlated with the included variables). To take
advantage of coarsened exact matching without failing to find any matches, the covariates
can be manually coarsened outside of matchit() and then supplied to the exact argument
in a call to matchit() with another matching method.

Setting k2k = TRUE is equivalent to matching with k2k = FALSE and then supplying stratum
membership as an exact matching variable (i.e., in exact) to another call to matchit()
with method = "nearest”, distance = "mahalanobis” and an argument to discard denoting
unmatched units. It is also equivalent to performing nearest neighbor matching supplying
coarsened versions of the variables to exact, except that method = "cem” automatically
coarsens the continuous variables. The estimand argument supplied with method = "cem”
functions the same way it would in these alternate matching calls, i.e., by determining the
”focal” group that controls the order of the matching.

Grouping and Cutpoints: The grouping and cutpoints arguments allow one to
fine-tune the coarsening of the covariates. grouping is used for combining categories of
categorical covariates and cutpoints is used for binning numeric covariates. The values
supplied to these arguments should be iteratively changed until a matching solution that
balances covariate balance and remaining sample size is obtained. The arguments are
described below.

The argument to grouping must be a list, where each component has the name of a
categorical variable, the levels of which are to be combined. Each component must itself
be a list; this list contains one or more vectors of levels, where each vector corresponds
to the levels that should be combined into a single category. For example, if a variable
amount had levels "none”, "some”, and "a lot"”, one could enter grouping = list(amount
= list(c("none"),c("some","a lot"))), which would group "some” and "a lot” into a
single category and leave "none” in its own category. Any levels left out of the list for each
variable will be left alone (so c(”"none") could have been omitted from the previous code).
Note that if a categorical variable does not appear in grouping, it will not be coarsened, so
exact matching will take place on it. grouping should not be used for numeric variables;
use cutpoints, described below, instead.

20

method_cem

The argument to cutpoints must also be a list, where each component has the name of a
numeric variables that is to be binned. (As a shortcut, it can also be a single value that
will be applied to all numeric variables). Each component can take one of three forms: a
vector of cutpoints that separate the bins, a single number giving the number of bins, or
a string corresponding to an algorithm used to compute the number of bins. Any values
at a boundary will be placed into the higher bin; e.g., if the cutpoints were (c(0,5,10)),
values of 5 would be placed into the same bin as values of 6, 7, 8, or 9, and values of 10
would be placed into a different bin. Internally, values of -Inf and Inf are appended to
the beginning and end of the range. When given as a single number defining the number
of bins, the bin boundaries are the maximum and minimum values of the variable with
bin boundaries evenly spaced between them, i.e., not quantiles. A value of 0 will not
perform any binning (equivalent to exact matching on the variable), and a value of 1 will
remove the variable from the exact matching variables but it will be still used for pair
matching when k2k = TRUE. The allowable strings include "sturges”, "scott”, and "fd",
which use the corresponding binning method, and "g#" where # is a number, which splits
the variable into # equally-sized bins (i.e., quantiles).

An example of a way to supply an argument to cutpoints would be the following:

cutpoints = list(X1 = 4,
X2 = ¢(1.7, 5.5, 10.2),
X3 = "scott"”,
X4 = "g5")

This would split X1 into 4 bins, X2 into bins based on the provided boundaries, X3 into
a number of bins determined by nclass.scott, and X4 into quintiles. All other numeric
variables would be split into a number of bins determined by nclass.Sturges, the default.

Outputs

Note

All outputs described in matchit are returned with method = "cem” except for match.matrix.
When k2k = TRUE, a match.matrix component with the matched pairs is also included.

This method does not rely on the cem package, instead using code written for Matchlt, but
its design is based on the original cem functions. Versions of Matchlt prior to 4.1.0 did rely
on cem, so results may differ between versions. There are a few differences between the
ways Matchlt and cem (and older versions of Matchlt) differ in executing coarsened exact
matching, described below.

e In Matchlt, when a single number is supplied to cutpoints, it describes the number
of bins; in cem, it describes the number of cutpoints separating bins. The Matchlt
method is closer to how hist processes breaks points to create bins.

e When cutpoints are used, "ss” (for Shimazaki-Shinomoto’s rule) can be used in cem
but not in Matchlt.

e When k2k = TRUE, Matchlt matches on the original variables (scaled), whereas cem
matches on the coarsened variables. Because the variables are already exactly matched

on the coarsened variables, matching in cem is equivalent to random matching within
strata.

e When k2k = TRUE, in Matchlt matched units are identified by pair membership, and
the original stratum membership prior to 1:1 matching is discarded. In cem, pairs are
not identified beyond the stratum the members are part of.

e When k2k = TRUE, k2k.method = "mahalanobis” can be requested in Matchlt but not
in cem.

method_exact 21

References

In a manuscript, you don’t need to cite another package when using method = "cem” because
the matching is performed completely within Matchlt. For example, a sentence might read:

Coarsened exact matching was performed using the MatchIt package (Ho, Imai, King, €
Stuart, 2011) in R.

It would be a good idea to cite the following article, which develops the theory behind
coarsened exact matching:

Tacus, S. M., King, G., & Porro, G. (2012). Causal Inference without Balance Checking:
Coarsened Exact Matching. Political Analysis, 20(1), 1-24. doi: 10.1093 /pan/mpr013

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit.

The cem package, upon which this method is based and which provided the workhorse in
previous versions of Matchlt.

method_exact for exact matching, which performs exact matching on the covariates without
coarsening.

Examples

data("lalonde")

Coarsened exact matching on age, race, married, and educ with educ

coarsened into 5 bins and race coarsened into 2 categories,

grouping "white” and "hispan” together

m.out1l <- matchit(treat ~ age + race + married + educ, data = lalonde,
method = "cem”, cutpoints = list(educ = 5),
grouping = list(race = list(c("white”, "hispan"),

c("black"))))
m.out1
summary(m.out1)

The same but requesting 1:1 Mahalanobis distance matching with

the k2k and k2k.method argument. Note the remaining number of units
is smaller than when retaining the full matched sample.

m.out2 <- matchit(treat ~ age + race + married + educ, data = lalonde,

method = "cem”, cutpoints = list(educ = 5),
grouping = list(race = list(c("white”, "hispan"),
"black")),

k2k = TRUE, k2k.method = "mahalanobis”)
m.out2
summary (m.out2)

method_exact FEzxact Matching

https://doi.org/10.1093/pan/mpr013

22 method_exact

Description

In matchit, setting method = "exact"” performs exact matching. With exact matching, a
complete cross of the covariates is used to form subclasses defined by each combination of
the covariate levels. Any subclass that doesn’t contain both treated and control units is
discarded, leaving only subclasses containing treatment and control units that are exactly
equal on the included covariates. The benefits of exact matching are that confounding due
to the covariates included is completely eliminated, regardless of the functional form of the
treatment or outcome models. The problem is that typically many units will be discarded,
sometimes dramatically reducing precision and changing the target population of inference.
To use exact matching in combination with another matching method (i.e., to exact match
on some covariates and some other form of matching on others), use the exact argument
with that method.

This page details the allowable arguments with method = "exact”. See matchit for an
explanation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for exact matching:

matchit(formula, data = NULL, method = "exact”,
estimand = "ATT", s.weights = NULL,

verbose = FALSE, ...)
Arguments

formula a two-sided formula object containing the treatment and covariates to
be used in creating the subclasses defined by a full cross of the covariate
levels.

data a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.

method set here to "exact”.

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". The estimand controls how the weights are computed;
see the Computing Weights section at matchit for details.

s.weights the variable containing sampling weights to be incorporated into balance
statistics. These weights do not affect the matching process.

verbose logical; whether information about the matching process should be printed
to the console.
ignored.
The arguments distance (and related arguments), exact, mahvars, discard
(and related arguments), replace, m.order, caliper (and related argu-
ments), and ratio are ignored with a warning.

Outputs

All outputs described in matchit are returned with method = "exact” except for match.matrix.
This is because matching strata are not indexed by treated units as they are in some other
forms of matching.

References

In a manuscript, you don’t need to cite another package when using method = "exact”
because the matching is performed completely within Matchlt. For example, a sentence
might read:

method_full 23

Ezact matching was performed using the Matchlt package (Ho, Imai, King, & Stuart, 2011)
n R.

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit. The
exact argument can be used with other methods to perform exact matching in combination
with other matching methods.

method_cem for coarsened exact matching, which performs exact matching on coarsened
versions of the covariates.

Examples

data("lalonde")

Exact matching on age, race, married, and educ
m.outl <- matchit(treat ™ age + race + married + educ, data = lalonde,

method = "exact"”)
m.out1
summary(m.out1)
method_full Optimal Full Matching

Description

In matchit, setting method = "full” performs optimal full matching, which is a form of
subclassification wherein all units, both treatment and control (i.e., the ”full” sample),
are assigned to a subclass and receive at least one match. The matching is optimal in
the sense that that sum of the absolute distances between the treated and control units
in each subclass are as small as possible. The method relies on and is a wrapper for
optmatch: :fullmatch.

Advantages of optimal full matching include that the matching order is not required to be
specified, units do not need to be discarded, and it is less likely that extreme within-subclass
distances will be large, unlike with standard subclassification. The primary output of full
matching is a set of matching weights that can be applied to the matched sample; in this
way, full matching can be seen as a robust alternative to propensity score weighting, robust
in the sense that the propensity score model does not need to be correct to estimate the
treatment effect without bias.

This page details the allowable arguments with method = "fullmatch”. See matchit for an
explanation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for optimal full matching:

matchit(formula, data = NULL, method = "full”,
distance = "glm", link = "logit”,
distance.options = list(), estimand = "ATT",
exact = NULL, mahvars = NULL, discard = "none”,
reestimate = FALSE, s.weights = NULL,
caliper = NULL, std.caliper = TRUE,
verbose = FALSE, ...)

24 method_full

Arguments

formula a two-sided formula object containing the treatment and covariates to be
used in creating the distance measure used in the matching. This formula
will be supplied to the functions that estimate the distance measure.

data a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.

method set here to "full”.

distance the distance measure to be used. See distance for allowable options.
When set to "mahalanobis”, optimal full Mahalanobis distance matching
will be performed on the variables named in formula.

link when distance is specified as a string and not "mahalanobis”, an ad-

ditional argument controlling the link function used in estimating the

distance measure. See distance for allowable options with each option.
distance.options

a named list containing additional arguments supplied to the function

that estimates the distance measure as determined by the argument to

distance.

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". The estimand controls how the weights are computed;
see the Computing Weights section at matchit for details.

exact for which variables exact matching should take place. Exact matching is
processed using optmatch: :exactMatch.

mahvars for which variables Mahalanobis distance matching should take place
when a distance measure other than "mahalanobis” is used (e.g., for
caliper matching or to discard units for common support). If specified,
the distance measure will not be used in matching.

discard a string containing a method for discarding units outside a region of com-
mon support. Only allowed when distance is not "mahalanobis”.

reestimate if discard is not "none”, whether to re-estimate the propensity score in
the remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propen-
sity score models and balance statistics.

caliper the width(s) of the caliper(s) used for caliper matching. Calipers are
processed by optmatch::caliper See Notes and Examples.

std.caliper logical; when calipers are specified, whether they are in standard devi-
ation units (TRUE) or raw units (FALSE).

verbose logical; whether information about the matching process should be printed
to the console.

additional arguments passed to optmatch::fullmatch. Allowed argu-
ments include min.controls, max.controls, omit.fraction, mean.controls,
and tol. See the optmatch: :fullmatch documentation for details.

The arguments replace, m.order, and ratio are ignored with a warning.

Details

Mahalanobis Distance Matching: Mahalanobis distance matching can be done one
of two ways:

method_full 25

1) If no propensity score needs to be estimated, distance should be set to "mahalanobis”,
and Mahalanobis distance matching will occur on all the variables in formula. Arguments
to discard and mahvars will be ignored, and a caliper can only be placed on named
variables. For example, to perform simple Mahalanobis distance matching, the following
could be run:

matchit(treat ~ X1 + X2, method = "nearest”,
distance = "mahalanobis"”)

With this code, the Mahalanobis distance is computed using X1 and X2, and matching
occurs on this distance. The distance component of the matchit output will be empty.

2) If a propensity score needs to be estimated for any reason, e.g., for common support
with discard or for creating a caliper, distance should be whatever method is used to
estimate the propensity score or a vector of distance measures, i.e., it should not be
"mahalanobis”. Use mahvars to specify the variables used to create the Mahalanobis
distance. For example, to perform Mahalanobis within a propensity score caliper, the
following could be run:

matchit(treat ~ X1 + X2 + X3, method = "nearest",
distance = "glm", caliper = .25,
mahvars = 7 X1 + X2)

With this code, X1, X2, and X3 are used to estimate the propensity score (using the "glm"
method, which by default is logistic regression), which is used to create a matching caliper.
The actual matching occurs on the Mahalanobis distance computed only using X1 and X2,
which are supplied to mahvars. Units whose propensity score difference is larger than the
caliper will not be paired, and some treated units may therefore not receive a match. The
estimated propensity scores will be included in the distance component of the matchit
output. See Examples.

When sampling weights are supplied through the s.weights argument, the covariance
matrix of the covariates used in the Mahalanobis distance is not weighted by the sampling
weights.

Outputs

All outputs described in matchit are returned with method = "full” except for match.matrix.
This is because matching strata are not indexed by treated units as they are in some other
forms of matching.

Note

Due to what appears to be a bug in optmatch (version 0.9-13), calipers can only be used
when min.controls is left at its default.

The option "optmatch_max_problem_size"” is automatically set to Inf during the matching
process, different from its default in optmatch. This enables matching problems of any size
to be run, but may also let huge, infeasible problems get through and potentially take a
long time or crash R. See optmatch: :setMaxProblemSize for more details.

References

In a manuscript, be sure to cite the following paper if using matchit with method = "full":

Hansen, B. B., & Klopfer, S. O. (2006). Optimal Full Matching and Related Designs
via Network Flows. Journal of Computational and Graphical Statistics, 15(3), 609-627.
doi: 10.1198/106186006X 137047

https://doi.org/10.1198/106186006X137047

26

method_full

For example, a sentence might read:

Optimal full matching was performed using the Matchlt package (Ho, Imai, King, & Stuart,
2011) in R, which calls functions from the optmatch package (Hansen & Klopfer, 2006).

Theory is also developed in the following article:

Hansen, B. B. (2004). Full Matching in an Observational Study of Coaching for the
SAT. Journal of the American Statistical Association, 99(467), 609-618. doi: 10.1198/
016214504000000647

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit.
optmatch: : fullmatch, which is the workhorse.

method_optimal for optimal pair matching, which is a special case of optimal full matching,
and which relies on similar machinery. Results from method = "optimal” can be replicated
with method = "full” by setting min.controls, max.controls, and mean.controls to the
desired ratio.

Examples

data("lalonde")

Optimal full PS matching
m.out1l <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "full")
m.out1
summary(m.out1)

Optimal full Mahalanobis distance matching within a PS caliper
m.out2 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "full”, caliper = .01,
mahvars = ~ age + educ + re74 + re75)
m.out?2
summary(m.out2)

Optimal full Mahalanobis distance matching within calipers
of 500 on re74 and re75
m.out3 <- matchit(treat ~ age + educ + re74 + re75,
data = lalonde, distance = "mahalanobis”,
method = "full”,
caliper = c(re74 = 500, re75 = 500),
std.caliper = FALSE)
m.out3
summary(m.out3, addlvariables = “race + nodegree + married,
data = lalonde)

https://doi.org/10.1198/016214504000000647
https://doi.org/10.1198/016214504000000647

method_genetic 27

method_genetic Genetic Matching

Description

In matchit, setting method = "genetic” performs genetic matching. Genetic matching is a
form of nearest neighbor matching where distances are computed as the generalized Ma-
halanobis distance, which is a generalization of the Mahalanobis distance with a scaling
factor for each covariate that represents the importance of that covariate to the distance.
A genetic algorithm is used to select the scaling factors. The scaling factors are chosen as
those which maximize a criterion related to covariate balance, which can be chosen, but
which by default is the smallest p-value in covariate balance tests among the covariates.
This method relies on and is a wrapper for Matching::GenMatch and Matching: :Match,
which use rgenoud: : genoud to perform the optimization using the genetic algorithm.

This page details the allowable arguments with method = "genmatch”. See matchit for an
explanation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for genetic matching:

matchit(formula, data = NULL, method = "genetic",
distance = "glm", link = "logit",
distance.options = list(), estimand = "ATT",
exact = NULL, mahvars = NULL, discard = "none",
reestimate = FALSE, s.weights = NULL,
replace = FALSE, m.order = NULL,
caliper = NULL, ratio = 1, verbose = FALSE,

)

Arguments

formula a two-sided formula object containing the treatment and covariates to be
used in creating the distance measure used in the matching. This formula
will be supplied to the functions that estimate the distance measure and
is used to determine the covariates whose balance is to be optimized.

data a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.

method set here to "genetic”.

distance the distance measure to be used. See distance for allowable options.
When set to "mahalanobis”, only the covariates in formula are supplied to
the generalized Mahalanobis distance matrix to have their scaling factors
chosen. Otherwise, the distance measure is included with the covariates
in formula to be supplied to the generalized Mahalanobis distance matrix
unless mahvars is specified.

link when distance is specified as a string and not "mahalanobis”, an ad-
ditional argument controlling the link function used in estimating the
distance measure. See distance for allowable options with each option.
distance.options
a named list containing additional arguments supplied to the function
that estimates the distance measure as determined by the argument to
distance.

28 method_genetic

estimand a string containing the desired estimand. Allowable options include "ATT"
and "ATC". See Details.

exact for which variables exact matching should take place.

mahvars when a distance measure other than "mahalanobis” is used (e.g., for

caliper matching or to discard units for common support), which covari-
ates should be supplied to the generalized Mahalanobis distance matrix.
If unspecified, all variables in formula will be supplied to the distance ma-
trix. Use mahvars to only supply a subset. Even if mahvars is specified,
balance will be optimized on all covariates in formula.

discard a string containing a method for discarding units outside a region of com-
mon support. Only allowed when distance is not "mahalanobis”.

reestimate if discard is not "none"”, whether to re-estimate the propensity score in
the remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propen-
sity score models and balance statistics. These are also supplied to
GenMatch for use in computing the balance t-test p-values in the process
of matching.

replace whether matching should be done with replacement.

m.order the order that the matching takes place. The default for distance =
"mahalanobis” is "data”. Otherwise, the default is "largest”. See
matchit for allowable options.

caliper the width(s) of the caliper(s) used for caliper matching. See Details and
Examples.
std.caliper logical; when calipers are specified, whether they are in standard devi-

ation units (TRUE) or raw units (FALSE).

ratio how many control units should be matched to each treated unit for k:1
matching. Should be a single integer value.

verbose logical; whether information about the matching process should be printed
to the console. When TRUE, output from GenMatch with print.level =2
will be displayed. Default is FALSE for no printing other than warnings.

additional arguments passed to Matching::GenMatch. Potentially useful
options include pop.size, max.generations, and fit.func. If pop.size
is not specified, a warning from Matching will be thrown reminding you
to change it. Note that the ties and CommonSupport arguments are set
to FALSE and cannot be changed.

Details

In genetic matching, covariates play three roles: 1) as the variables on which balance is
optimized, 2) as the variables in the generalized Mahalanobis distance between units, and
3) in estimating the propensity score. Variables supplied to formula are always used for role
(1), as the variables on which balance is optimized. When distance is not "mahalanobis”,
the covariates are also used to estimate the propensity score (unless it is supplied). When
mahvars is specified, the named variables will form the covariates that go into the distance
matrix. Otherwise, the variables in formula along with the propensity score will go into
the distance matrix. This leads to three ways to use distance and mahvars to perform the
matching:

1) When distance = "mahalanobis”, no propensity score is estimated, and the covariates
in formula are used to form the generalized Mahalanobis distance matrix. In this sense,

method_genetic 29

"mahalanobis” signals that no propensity score is to be estimated and that the matching
variables are those in formula, consistent with setting distance = "mahalanobis” with other
methods.

2) When distance is not "mahalanobis” and mahvars is not specified, the covariates in
formula along with the propensity score are used to form the generalized Mahalanobis
distance matrix. This is the default and most typical use of method = "genetic"” in matchit.

3) When distance is not "mahalanobis” and mahvars is specified, the covariates in mahvars
are used to form the generalized Mahalanobis distance matrix. The covariates in formula
are used to estimate the propensity score and have their balance optimized by the genetic
algorithm. The propensity score is not included in the generalized Mahalanobis distance
matrix.

When a caliper is specified, any variables mentioned in caliper, possibly including the
propensity score, will be added to the matching variables used to form the generalized
Mahalanobis distance matrix. This is because Matching doesn’t allow for the separation of
caliper variables and matching variables in genetic matching.

Estimand: The estimand argument controls whether control units are selected to be
matched with treated units (estimand = "ATT") or treated units are selected to be matched
with control units (estimand = "ATC"). The ”focal” group (e.g., the treated units for the
ATT) is typically made to be the smaller treatment group, and a warning will be thrown
if it is not set that way unless replace = TRUE. Setting estimand = "ATC" is equivalent
to swapping all treated and control labels for the treatment variable. When estimand =
"ATC", the default m.order is "smallest”, and the match.matrix component of the output
will have the names of the control units as the rownames and be filled with the names of
the matched treated units (opposite to when estimand = "ATT"”). Note that the argument
supplied to estimand doesn’t necessarily correspond to the estimand actually targeted; it
is merely a switch to trigger which treatment group is considered ”focal”. Note that while
GenMatch() and Matching() support the ATE as an estimand, matchit() only supports
the ATT and ATC for genetic matching.

Outputs

All outputs described in matchit are returned with method = "genetic”. When repalce
TRUE, the subclass component is omitted.

References

In a manuscript, be sure to cite the following papers if using matchit with method
"genetic":

Diamond, A., & Sekhon, J. S. (2013). Genetic matching for estimating causal effects:
A general multivariate matching method for achieving balance in observational studies.
Review of Economics and Statistics, 95(3), 932-945. doi: 10.1162/REST_a_00318

Sekhon, J. S. (2011). Multivariate and Propensity Score Matching Software with Auto-
mated Balance Optimization: The Matching package for R. Journal of Statistical Software,
42(1), 1-52. doi: 10.18637 /jss.v042.107

For example, a sentence might read:

Genetic matching was performed using the Matchlt package (Ho, Imai, King, & Stuart,
2011) in R, which calls functions from the Matching package (Diamond & Sekhon, 2015;
Sekhon, 2011).

https://doi.org/10.1162/REST_a_00318
https://doi.org/10.18637/jss.v042.i07

30 method_nearest

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit.

Matching: :GenMatch and Matching: :Match, which do the work.

Examples

data("lalonde")

1:1 genetic matching with PS as a covariate
m.outl <- matchit(treat ™ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "genetic”,
pop.size = 10) #use much larger pop.size
m.out1
summary(m.out1)

2:1 genetic matching with replacement without PS
m.out2 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,

method = "genetic”, replace = TRUE,
ratio = 2, distance = "mahalanobis”,
pop.size = 10) #use much larger pop.size

m.out2

summary (m.out2)

1:1 genetic matching on just age, educ, re74, and re75

within calipers on PS and educ; other variables are

used to estimate PS

m.out3 <- matchit(treat ™ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,

method = "genetic”,
mahvars = ~ age + educ + re74 + re75,
caliper = c(.05, educ = 2),
std.caliper = c(TRUE, FALSE),
pop.size = 10) #use much larger pop.size

m.out3
summary(m.out3)

method_nearest Nearest Neighbor Matching

Description

In matchit, setting method = "nearest” performs greedy nearest neighbor matching. A
distance is computed between each treated unit and each control unit, and, one by one,
each treated unit is assigned a control unit as a match. The matching is ”greedy” in the
sense that there is no action taken to optimize an overall criterion; each match is selected
without considering the other matches that may occur subsequently.

This page details the allowable arguments with method = "nearest”. See matchit for an
explanation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for nearest neighbor matching:

method_nearest 31

matchit(

Arguments

formula

data

method
distance
link

distance

estimand

exact

mahvars

discard

reestima

s.weight

replace

m.order

caliper

std.cali

ratio

formula, data = NULL, method = "nearest”,
distance = "glm”, link = "logit”,
distance.options = list(), estimand = "ATT",
exact = NULL, mahvars = NULL, discard = "none”,

reestimate = FALSE, s.weights = NULL,

replace = TRUE, m.order = NULL, caliper = NULL,
ratio = 1, min.controls = NULL,

max.controls = NULL, verbose = FALSE, ...)

a two-sided formula object containing the treatment and covariates to be
used in creating the distance measure used in the matching.

a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.

set here to "nearest”.
the distance measure to be used. See distance for allowable options.

when distance is specified as a string and not "mahalanobis”, an ad-

ditional argument controlling the link function used in estimating the

distance measure. See distance for allowable options with each option.
.options

a named list containing additional arguments supplied to the function

that estimates the distance measure as determined by the argument to

distance.

a string containing the desired estimand. Allowable options include "ATT"
and "ATC". See Details.

for which variables exact matching should take place.

for which variables Mahalanobis distance matching should take place
when a distance measure other than "mahalanobis” is used (e.g., for
caliper matching or to discard units for common support). If specified,
the distance measure will not be used in matching.

a string containing a method for discarding units outside a region of com-
mon support. Only allowed when distance is not "mahalanobis”.

te if discard is not "none”, whether to re-estimate the propensity score in
the remaining sample prior to matching.

S the variable containing sampling weights to be incorporated into propen-
sity score models and balance statistics.

whether matching should be done with replacement.

the order that the matching takes place. The default for distance =
"mahalanobis” is "data”. Otherwise, the default is "largest”. See
matchit for allowable options.

the width(s) of the caliper(s) used for caliper matching. See Details and
Examples.

per logical; when calipers are specified, whether they are in standard devi-
ation units (TRUE) or raw units (FALSE).

how many control units should be matched to each treated unit for k:1
matching. For variable ratio matching, see section ” Variable Ratio Match-
ing” in Details below.

32 method_nearest
min.controls, max.controls
for variable ratio matching, the minimum and maximum number of con-
trols units to be matched to each treated unit. See section ” Variable Ratio
Matching” in Details below.
verbose logical; whether information about the matching process should be printed
to the console. When TRUE, a progress bar implemented using Rcpp-
Progress will be displayed.
ignored.
Details

Mahalanobis Distance Matching: Mahalanobis distance matching can be done one
of two ways:

1) If no propensity score needs to be estimated, distance should be set to "mahalanobis”,
and Mahalanobis distance matching will occur on all the variables in formula. Arguments
to discard and mahvars will be ignored, and a caliper can only be placed on named
variables. For example, to perform simple Mahalanobis distance matching, the following
could be run:

matchit(treat ~ X1 + X2, method = "nearest”,
distance = "mahalanobis"”)

With this code, the Mahalanobis distance is computed using X1 and X2, and matching
occurs on this distance. The distance component of the matchit output will be empty.

2) If a propensity score needs to be estimated for any reason, e.g., for common support
with discard or for creating a caliper, distance should be whatever method is used to
estimate the propensity score or a vector of distance measures, i.e., it should not be
"mahalanobis”. Use mahvars to specify the variables used to create the Mahalanobis
distance. For example, to perform Mahalanobis within a propensity score caliper, the
following could be run:

matchit(treat ~ X1 + X2 + X3, method = "nearest",
distance = "glm", caliper = .25,
mahvars = 7 X1 + X2)

With this code, X1, X2, and X3 are used to estimate the propensity score (using the "glm"
method, which by default is logistic regression), which is used to create a matching caliper.
The actual matching occurs on the Mahalanobis distance computed only using X1 and X2,
which are supplied to mahvars. Units whose propensity score difference is larger than the
caliper will not be paired, and some treated units may therefore not receive a match. The
estimated propensity scores will be included in the distance component of the matchit
output. See Examples.

When sampling weights are supplied through the s.weights argument, the covariance
matrix of the covariates used in the Mahalanobis distance is weighted by the sampling
weights.

Estimand: The estimand argument controls whether control units are selected to be
matched with treated units (estimand = "ATT”) or treated units are selected to be matched
with control units (estimand = "ATC"). The ”focal” group (e.g., the treated units for the
ATT) is typically made to be the smaller treatment group, and a warning will be thrown
if it is not set that way unless replace = TRUE. Setting estimand = "ATC" is equivalent
to swapping all treated and control labels for the treatment variable. When estimand =
"ATC", the default m.order is "smallest”, and the match.matrix component of the output
will have the names of the control units as the rownames and be filled with the names of

method_nearest 33

the matched treated units (opposite to when estimand = "ATT"”). Note that the argument
supplied to estimand doesn’t necessarily correspond to the estimand actually targeted; it
is merely a switch to trigger which treatment group is considered ”focal”.

Variable Ratio Matching: matchit can perform variable ratio ”extremal” matching as
described by Ming and Rosenbaum (2000). This method tends to result in better balance
than fixed ratio matching at the expense of some precision. When ratio > 1, rather than
requiring all treated units to receive ratio matches, each treated unit is assigned a value
that corresponds to the number of control units they will be matched to. These values
are controlled by the arguments min.controls and max.controls, which correspond to «
and S, respectively, in Ming and Rosenbaum (2000), and trigger variable ratio matching
to occur. Some treated units will receive min.controls matches and others will receive
max.controls matches (and one unit may have an intermediate number of matches); how
many units are assigned each number of matches is determined by the algorithm described
in Ming and Rosenbaum (2000, p119). ratio controls how many total control units will
be matched: n1 * ratio control units will be matched, where n1 is the number of treated
units, yielding the same total number of matched controls as fixed ratio matching does.
Variable ratio matching cannot be used with Mahalanobis distance matching. The calcu-
lations of the numbers of control units each treated unit will be matched to occurs without
consideration of caliper or discard. ratio does not have to be an integer but must be
greater than 1 and less than n@/n1, where n@ and n1 are the number of control and treated
units, respectively. Setting ratio = n@/n1 performs a crude form of full matching where
all control units are matched. If min.controls is not specified, it is set to 1 by default.
min.controls must be less than ratio and max.controls must be greater than ratio.
See Examples below for an example of their use.

Outputs

All outputs described in matchit are returned with method = "nearest”. When replace =
TRUE, the subclass component is omitted.

References

In a manuscript, you don’t need to cite another package when using method = "nearest”
because the matching is performed completely within Matchlt. For example, a sentence
might read:

Nearest neighbor matching was performed using the Matchlt package (Ho, Imai, King, &
Stuart, 2011) in R.

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit.

method_optimal for optimal pair matching, which is similar to nearest neighbor matching
except that an overall distance criterion is minimized.

Examples

data("lalonde")

1:1 greedy NN matching on the PS
m.out1l <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "nearest”)
m.out1

34 method_optimal

summary(m.out1)

3:1 NN Mahalanobis distance matching with

replacement within a PS caliper

m.out2 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,

method = "nearest”, replace = TRUE,
mahvars = ~ age + educ + re74 + re75,
ratio = 3, caliper = .02)

m.out2

summary (m.out2)

1:1 NN Mahalanobis distance matching within calipers

on re74 and re75 and exact matching on married and race

m.out3 <- matchit(treat ™ age + educ + re74 + re75, data = lalonde,
method = "nearest”, distance = "mahalanobis”,
exact = ~ married + race,
caliper = c(re74 = .2, re75 = .15))

m.out3

summary(m.out3)

2:1 variable ratio NN matching on the PS
m.out4 <- matchit(treat ™ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "nearest”, ratio = 2,
min.controls = 1, max.controls = 12)
m.out4
summary (m.out4)

Some units received 1 match and some received 12
table(table(m.out4$subclass[m.out4$treat == 0]1))

method_optimal Optimal Pair Matching

Description

In matchit, setting method = "optimal” performs optimal pair matching. The matching
is optimal in the sense that that sum of the absolute pairwise distances in the matched
sample are as small as possible. The method functionally relies on optmatch: :pairmatch.
Advantages of optimal pair matching include that the matching order is not required to be
specified and it is less likely that extreme within-pair distances will be large, unlike with
nearest neighbor matching. Generally, however, as a subset selection method, optimal pair
matching tends to perform similarly to nearest neighbor matching in that similar subsets
of units will be selected to be matched.

This page details the allowable arguments with method = "optmatch”. See matchit for an
explanation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for optimal pair matching:

matchit(formula, data = NULL, method = "optimal”,
distance = "glm", link = "logit",
distance.options = list(), estimand = "ATT",
exact = NULL, mahvars = NULL, discard = "none",

method_optimal

35

reestimate = FALSE, s.weights = NULL,

ratio = 1, min.controls = NULL,
max.controls = NULL, verbose = FALSE, ...)
Arguments
formula a two-sided formula object containing the treatment and covariates to be
used in creating the distance measure used in the matching. This formula
will be supplied to the functions that estimate the distance measure.
data a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.
method set here to "optimal”.
distance the distance measure to be used. See distance for allowable options.
When set to "mahalanobis”, optimal Mahalanobis distance matching will
be performed on the variables named in formula.
link when distance is specified as a string and not "mahalanobis”, an ad-

ditional argument controlling the link function used in estimating the
distance measure. See distance for allowable options with each option.

distance.options

estimand

exact

mahvars

discard

reestimate

s.weights

ratio

a named list containing additional arguments supplied to the function
that estimates the distance measure as determined by the argument to
distance.

a string containing the desired estimand. Allowable options include "ATT"
and "ATC". See Details.

for which variables exact matching should take place. Exact matching is
processed using optmatch: :exactMatch.

for which variables Mahalanobis distance matching should take place
when a distance measure other than "mahalanobis” is used (e.g., to dis-
card units for common support). If specified, the distance measure will
not be used in matching.

a string containing a method for discarding units outside a region of com-
mon support. Only allowed when distance is not "mahalanobis”.

if discard is not "none”, whether to re-estimate the propensity score in
the remaining sample prior to matching.

the variable containing sampling weights to be incorporated into propen-
sity score models and balance statistics.

how many control units should be matched to each treated unit for k:1
matching. For variable ratio matching, see section ” Variable Ratio Match-
ing” in Details below.

min.controls, max.controls

verbose

for variable ratio matching, the minimum and maximum number of con-
trols units to be matched to each treated unit. See section ” Variable Ratio
Matching” in Details below.

logical; whether information about the matching process should be printed
to the console. What is printed depends on the matching method. Default
is FALSE for no printing other than warnings.

additional arguments passed to optmatch::pairmatch. Only the tols
argument, which is eventually passed to optmatch: : fullmatch, is allowed.
The arguments replace, caliper, and m.order are ignored with a warn-
ing.

36 method_optimal

Details

Mahalanobis Distance Matching: Mahalanobis distance matching can be done one
of two ways:

1) If no propensity score needs to be estimated, distance should be set to "mahalanobis”,
and Mahalanobis distance matching will occur on all the variables in formula. Arguments
to discard and mahvars will be ignored. For example, to perform simple Mahalanobis
distance matching, the following could be run:

matchit(treat ~ X1 + X2, method = "nearest”,
distance = "mahalanobis")

With this code, the Mahalanobis distance is computed using X1 and X2, and matching
occurs on this distance. The distance component of the matchit output will be empty.

2) If a propensity score needs to be estimated for common support with discard, distance
should be whatever method is used to estimate the propensity score or a vector of distance
measures, i.e., it should not be "mahalanobis”. Use mahvars to specify the variables used
to create the Mahalanobis distance. For example, to perform Mahalanobis after discarding
units outside the common support of the propensity score in both groups, the following
could be run:

matchit(treat ~ X1 + X2 + X3, method = "nearest”,
distance = "glm", discard = "both",
mahvars = 7 X1 + X2)

With this code, X1, X2, and X3 are used to estimate the propensity score (using the "glm"
method, which by default is logistic regression), which is used to identify the common
support. The actual matching occurs on the Mahalanobis distance computed only using
X1 and X2, which are supplied to mahvars. The estimated propensity scores will be included
in the distance component of the matchit output.

When sampling weights are supplied through the s.weights argument, the covariance
matrix of the covariates used in the Mahalanobis distance is not weighted by the sampling
weights.

Estimand: The estimand argument controls whether control units are selected to
be matched with treated units (estimand = "ATT") or treated units are selected to be
matched with control units (estimand = "ATC"). The ”focal” group (e.g., the treated
units for the ATT) is typically made to be the smaller treatment group, and a warning
will be thrown if it is not set that way unless replace = TRUE. Setting estimand = "ATC"
is equivalent to swapping all treated and control labels for the treatment variable. When
estimand = "ATC", the match.matrix component of the output will have the names of
the control units as the rownames and be filled with the names of the matched treated
units (opposite to when estimand = "ATT"). Note that the argument supplied to estimand
doesn’t necessarily correspond to the estimand actually targeted; it is merely a switch to
trigger which treatment group is considered ”focal”.

Variable Ratio Matching: matchit can perform variable ratio matching, which in-
volves matching a different number of control units to each treated unit. When ratio
> 1, rather than requiring all treated units to receive ratio matches, the arguments to
max.controls and min.controls can be specified to control the maximum and minimum
number of matches each treated unit can have. ratio controls how many total control
units will be matched: n1 * ratio control units will be matched, where n1 is the number of
treated units, yielding the same total number of matched controls as fixed ratio matching
does.

method_optimal 37

Variable ratio matching be used with either propensity score matching or Mahalanobis
distance matching. ratio does not have to be an integer but must be greater than 1 and
less than n@/n1, where n@ and n1 are the number of control and treated units, respectively.
Setting ratio = n@/n1 performs a restricted form of full matching where all control units
are matched. If min.controls is not specified, it is set to 1 by default. min.controls
must be less than ratio and max.controls must be greater than ratio. See the Examples
section of method_nearest for an example of their use, which is the same as it is with
optimal matching.

Outputs

All outputs described in matchit are returned with method = "optimal”.

Note

Calipers may eventually be compatible with this method, but due to what appears to be a
bug in optmatch (version 0.9-13), they are currently disabled.

Optimal pair matching is a restricted form of optimal full matching where the number of
treated units in each subclass is equal to 1, whereas in unrestricted full matching, multiple
treated units can be assigned to the same subclass. optmatch: :pairmatch is simply a wrap-
per for optmatch: :fullmatch, which performs optimal full matching and is the workhorse
for method_full. In the same way, matchit uses optmatch: :fullmatch under the hood, im-
posing the restrictions that make optimal full matching function like optimal pair matching
(which is simply to set min.controls >= 1 and to pass ratio to the mean.controls argu-
ment). This distinction is not important for regular use but may be of interest to those
examining the source code.

The option "optmatch_max_problem_size” is automatically set to Inf during the matching
process, different from its default in optmatch. This enables matching problems of any size
to be run, but may also let huge, infeasible problems get through and potentially take a
long time or crash R. See optmatch: :setMaxProblemSize for more details.

References

In a manuscript, be sure to cite the following paper if using matchit with method = "optimal”:

Hansen, B. B., & Klopfer, S. O. (2006). Optimal Full Matching and Related Designs
via Network Flows. Journal of Computational and Graphical Statistics, 15(3), 609-627.
doi: 10.1198/106186006X 137047

For example, a sentence might read:

Optimal pair matching was performed using the Matchlt package (Ho, Imai, King, & Stuart,
2011) in R, which calls functions from the optmatch package (Hansen & Klopfer, 2006).

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit.
optmatch: :pairmatch, which is the workhorse.

method_full for optimal full matching, of which optimal pair matching is a special case,
and which relies on similar machinery.

https://doi.org/10.1198/106186006X137047

38 method_subclass

Examples

data("lalonde")

1:1 optimal PS matching with exact matching on race
m.out1l <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "optimal”, exact = “race)
m.out1
summary(m.out1)

#2:1 optimal Mahalanobis distance matching
m.out2 <- matchit(treat ™ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,

method = "optimal”, distance = "mahalanobis”,
ratio = 2)
m.out2
summary(m.out?2)
method_subclass Subclassification

Description

In matchit, setting method = "subclass” performs subclassification on the distance measure
(i.e., propensity score). Treatment and control units are placed into subclasses based on
quantiles of the propensity score in the treated group, in the control group, or overall,
depending on the desired estimand. Weights are computed based on the proportion of
treated units in each subclass. Subclassification implemented here does not rely on any
other package.

This page details the allowable arguments with method = "subclass”. See matchit for an
explanation of what each argument means in a general context and how it can be specified.

Below is how matchit is used for subclassification:

matchit(formula, data = NULL, method = "subclass”,
distance = "glm", link = "logit",

distance.options = list(), estimand = "ATT",
discard = "none"”, reestimate = FALSE,
s.weights = NULL, verbose = FALSE, ...)
Arguments
formula a two-sided formula object containing the treatment and covariates to be
used in creating the distance measure used in the subclassification.
data a data frame containing the variables named in formula. If not found in
data, the variables will be sought in the environment.
method set here to "subclass”.
distance the distance measure to be used. See distance for allowable options.

distance = "mahalanobis” is not allowed.

method_subclass 39

link when distance is specified as a string, an additional argument controlling
the link function used in estimating the distance measure. See distance
for allowable options with each option.

distance.options
a named list containing additional arguments supplied to the function
that estimates the distance measure as determined by the argument to
distance.

estimand the target estimand. If "ATT", the default, subclasses are formed based on
quantiles of the distance measure in the treated group; if "ATC", subclasses
are formed based on quantiles of the distance measure in the control group;
if "ATE", subclasses are formed based on quantiles of the distance measure
in the full sample. The estimand also controls how the subclassification
weights are computed; see the Computing Weights section at matchit for
details.

discard a string containing a method for discarding units outside a region of com-
mon support.

reestimate if discard is not "none"”, whether to re-estimate the propensity score in
the remaining sample prior to subclassification.

s.weights the variable containing sampling weights to be incorporated into propen-
sity score models and balance statistics.

verbose logical; whether information about the matching process should be printed
to the console.

additional arguments that control the subclassification:

subclass either the number of subclasses desired or a vector of quantiles
used to divide the distance measure into subclasses. Default is 6.

min.n the minimum number of units of each treatment group that are to
be assigned each subclass. If the distance measure is divided in such
a way that fewer than min.n units of a treatment group are assigned
a given subclass, units from other subclasses will be reassigned to fill
the deficient subclass. Default is 1.

The arguments exact, mahvars, replace, m.order, caliper (and related
arguments), and ratio are ignored with a warning.

Detalils

After subclassification, effect estimates can be computed separately in the subclasses and
combined, or a single marginal effect can be estimated by using the weights in the full
sample. When using the weights, the method is sometimes referred to as marginal mean
weighting through stratification (MMWS; Hong, 2010) or fine stratification weighting (Desai
et al., 2017). The weights can be interpreted just like inverse probability weights.

Changing min.n can change the quality of the weights. Generally, a low min.w will yield
better balance because subclasses only contain units with relatively similar distance values,
but may yield higher variance because extreme weights can occur due to there being few
members of a treatment group in some subclasses.

Note that subclassification weights can also be estimated using Weightlt, which provides
some additional methods for estimating propensity scores. Where propensity score-estimation
methods overlap, both packages will yield the same weights.

40 method_subclass

Outputs

All outputs described in matchit are returned with method = "subclass” except that match.matrix
is excluded and two additional component, q.cut and gn, are included, containing a vector

of the distance measure cutpoints used to define the subclasses and a matrix of the subclass
sample sizes, respectively. Note that when min.n > @, the subclass assignments may not
strictly obey the quantiles listed in q.cut.

References

In a manuscript, you don’t need to cite another package when using method = "subclass”
because the subclassification is performed completely within Matchlt. For example, a sen-
tence might read:

Propensity score subclassification was performed using the Matchlt package (Ho, Imai, King,
& Stuart, 2011) in R.

It may be a good idea to cite Hong (2010) or Desai et al. (2017) if the treatment effect is
estimated using the subclassification weights.

Desai, R. J., Rothman, K. J., Bateman, B. . T., Hernandez-Diaz, S., & Huybrechts,
K. F. (2017). A Propensity-score-based Fine Stratification Approach for Confounding
Adjustment When Exposure Is Infrequent: Epidemiology, 28(2), 249-257. doi: 10.1097/
EDE.0000000000000595

Hong, G. (2010). Marginal mean weighting through stratification: Adjustment for selection
bias in multilevel data. Journal of Educational and Behavioral Statistics, 35(5), 499-531.
doi: 10.3102/1076998609359785

See Also

matchit for a detailed explanation of the inputs and outputs of a call to matchit.

method_full for optimal full matching, which is similar to subclassification except that the
number of subclasses and subclass membership are chosen to optimize the within-subclass
distance.

Examples

data("lalonde")

PS subclassification for the ATT with 7 subclasses
s.outl <- matchit(treat "~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "subclass”, subclass = 7)
s.outl
summary(s.outl, subclass = TRUE)

PS subclassification for the ATE with 10 subclasses
and at least 2 units in each group per subclass
s.out2 <- matchit(treat ™ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "subclass”, subclass = 10,
estimand = "ATE”, min.n = 2)

s.out?2
summary(s.out2)

https://doi.org/10.1097/EDE.0000000000000595
https://doi.org/10.1097/EDE.0000000000000595
https://doi.org/10.3102/1076998609359785

plot.matchit

41

plot.matchit

Generate Balance Plots after Matching and Subclassification

Description

Generates plots displaying distributional balance and overlap on covariates and propensity
scores before and after matching and subclassification. For displaying balance solely on
covariate standardized mean differences, see plot.summary.matchit. The plots here can be
used to assess to what degree covariate and propensity score distributions are balanced and
how weighting and discarding affect the distribution of propensity scores.

Usage

S3 method for class 'matchit'

plot(x, type
which.xs

"qq", interactive = TRUE,
= NULL, ...)

S3 method for class 'matchit.subclass'

plot(x, type
which.xs

Arguments

X

type

interactive

which.xs

subclass

Detalils

"qq", interactive = TRUE,
= NULL, subclass, ...)

a matchit object; the output of a call to matchit.

the type of plot to display. Options include "qq”, "ecdf”, "jitter”, and
"histogram”. See Details. Default is "qq”. Abbreviations allowed.

logical; whether the graphs should be displayed in an interactive way.
Only applies for type = "qq", "ecdf”, and "jitter"”. See Details.

with type = "qq" or "ecdf”, for which covariate(s) plots should be dis-
played. Factor variables should be named by the original variable name
rather than the names of individual dummy variables created after ex-
pansion with model.matrix.

with subclassification and type = "qq" or "ecdf”, whether to display bal-
ance for individual subclasses, and, if so, for which ones. Can be TRUE
(display plots for all subclasses), FALSE (display plots only in aggregate),
or the indices (e.g., 1:6) of the specific subclasses for which to display
balance. When unspecified, if interactive = TRUE, you will be asked for
which subclasses plots are desired, and otherwise, plots will be displayed
only in aggregate.

arguments passed to plot to control the appearance of the plot. Not all
options are accepted.

plot.matchit makes one of three different plots depending on the argument supplied to

type.

With type = "qq"”, empirical quantile-quantile (eQQ) plots are created for each covariate
before and after matching. The plots involve interpolating points in the smaller group
based on the weighted quantiles of the other group. When points are approximately on

42

plot.matchit

the 45-degree line, the distributions in the treatment and control groups are approximately
equal. Major deviations indicate departures from distributional balance. With variable
with fewer than 5 unique values, points are jittered to more easily visualize counts. When
interactive = TRUE, plots for three variables will be displayed at a time, and the prompt
in the console allows you to move on to the next set of variables. When interactive =
FALSE, multiple pages are plotted at the same time, but only the last few variables will be
visible in the displayed plot. To see only a few specific variables at a time, use the which.xs
argument to display eQQ plots for just those variables. If fewer than three (after expanding
factors into their dummies), interactive is ignored.

With type = "ecdf”, empirical cumulative density function (eCDF) plots are created for
each covariate before and after matching. Two eCDF lines are produced in each plot:
a gray one for control units and a black one for treated units. Each point on the lines
corresponds to the proportion of units (or proportionate share of weights) less than or
equal to the corresponding covariate value (on the x-axis). Deviations between the lines
on the same plot indicates distributional imbalance between the treatment groups for the
covariate. The eCDF and eQQ statistics in summary.matchit correspond to these plots:
the eCDF max (also known as the Kolmogorov-Smirnov statistic) and mean are the largest
and average vertical distance between the lines, and the eQQ max and mean are the largest
and average horizontal distance between the lines.

With type = "jitter”, a jitter plot is displayed for distance values before and after match-
ing. This method requires a distance variable (e.g., a propensity score) to have been
estimated or supplied in the call to matchit. The plot displays individuals values for
matched and unmatched treatment and control units arranged horizontally by their propen-
sity scores. Points are jitter so counts are easier to see. The size of the points increases
when they receive higher weights. When interactive = TRUE, you can click on points in the
graph to identify their rownames and indices to further probe extreme values, for example.
With subclassification, vertical lines representing the subclass boundaries are overlay on
the plots.

With type = "histogram”, a histogram of distance values is displayed for the treatment
and control groups before and after matching. This method requires a distance variable
(e.g., a propensity score) to have been estimated or supplied in the call to matchit. With
subclassification, vertical lines representing the subclass boundaries are overlay on the plots.

With all methods, sampling weights are incorporated into the weights if present.

Value

A plot is displayed, and x is invisibly returned.

Note

Sometimes, bugs in the plotting functions can cause strange layout or size issues. Running
frame() or dev.off() can be used to reset the plotting pane (note the latter will delete any
plots in the plot history).

See Also

summary.matchit for numerical summaries of balance, including those that rely on the eQQ
and eCDF plots.

plot.summary.matchit for plotting standardized mean differences in a Love plot.

cobalt::bal.plot for displaying distributional balance in several other ways that are more
easily customizable and produce ggplot2 objects. cobalt functions natively support matchit
objects.

plot.summary.matchit 43

Examples

data("lalonde")

m.out <- matchit(treat

age + educ + married +
race + re74, data = lalonde,

method = "nearest")

plot(m.out, type = "qq", interactive = FALSE,

which.xs =

c("age", "educ”, "married"))

plot(m.out, type = "histogram”)

s.out <- matchit(treat

age + educ + married +
race + nodegree + re74 + re75,

data = lalonde, method = "subclass")
plot(s.out, type = "ecdf"”, interactive = FALSE,
which.xs = c("age"”, "educ”, "married"),
subclass = 3)

plot(s.out, type

= "jitter"”, interactive = FALSE)

plot.summary.matchit Generate a Love Plot of Standardized Mean Differences

Description

Generates a Love plot, which is a dot plot with variable names on the y-axis and standard-
ized mean differences on the x-axis. Each point represents the standardized mean difference
of the corresponding covariate in the matched or unmatched sample. Love plots are a simple
way to display covariate balance before and after matching. The plots are generated using
dotchart and points.

Usage

S3 method for class 'summary.matchit'
plot(x, abs = TRUE, var.order = "data"”,
threshold = c(.1, .05), position = "bottomright”, ...)

Arguments

X

abs

var.order

threshold

a summary.matchit object; the output of a call to summary.matchit. The
standardize argument must be set to TRUE (which is the default) in the
call to summary.

logical; whether the standardized mean differences should be displayed
in absolute value (TRUE, default) or not FALSE.

how the variables should be ordered. Allowable options include "data”,
ordering the variables as they appear in the summary output; "unmatched”,
ordered the variables based on their standardized mean differences before
matching; "matched”, ordered the variables based on their standardized
mean differences after matching; and "alphabetical”, ordering the vari-
ables alphabetically. Default is "data”. Abbreviations allowed.

numeric values at which to place vertical lines indicating a balance thresh-
old. These can make it easier to see for which variables balance has been
achieved given a threshold. Multiple values can be supplied to add mul-
tiple lines. When abs = FALSE, the lines will be displayed on both sides

44 plot.summary.matchit

of zero. The lines are drawn with abline with the linetype (1ty) argu-
ment corresponding to the order of the entered variables (see options at
par). The default is c(.1,.05) for a solid line (1ty = 1) at .1 and a dashed
line (1ty = 2) at .05, indicating acceptable and good balance, respectively.
Enter a value as NA to skip that value of 1ty (e.g., c(NA, .@5) to have only
a dashed vertical line at .05).

position the position of the legend. Should be one of the allowed keyword options
supplied to x in legend (e.g., "right”, "bottomright”, etc.). Default is
"bottomright”. Set to NULL for no legend to be included. Note that
the legend will cover up points if you are not careful; setting var.order
appropriately can help in avoiding this.

ignored.

Details

For matching methods other than subclassification, plot.summary.matchit uses x$sum.all[,"Std.
Mean Diff.”] and x$sum.matched[,”Std. Mean Diff."] as the x-axis values. For subclas-
sification, in addition to points for the unadjusted and aggregate subclass balance, nu-
merals representing balance in individual subclasses are plotted if subclass = TRUE in

the call to summary. Aggregate subclass standardized mean differences are taken from
x$sum.across[,"Std. Mean Diff."”] and the subclass-specific mean differences are taken

from x$sum.subclass.

Value

A plot is displayed, and x is invisibly returned.

Author(s)
Noah Greifer

See Also

summary.matchit, dotchart

cobalt::love.plot is a more flexible and sophisticated function to make Love plots and is
also natively compatible with matchit objects.

Examples

data("lalonde")
m.out <- matchit(treat ~ age + educ + married +
race + re74, data = lalonde,

method = "nearest")
plot(summary(m.out, interactions = TRUE),
var.order = "unmatched”)

s.out <- matchit(treat ~ age + educ + married +
race + nodegree + re74 + re75,
data = lalonde, method = "subclass”)
plot(summary(s.out, subclass = TRUE),
var.order = "unmatched”, abs = FALSE)

summary.matchit 45

summary.matchit View a balance summary of a matchit object

Description

Computes and prints balance statistics for matchit and matchit.subclass objects. Balance
should be assessed to ensure the matching or subclassification was effective at eliminating
treatment group imbalance and should be reported in the write-up of the results of the
analysis.

Usage

S3 method for class 'matchit'

summary(object, interactions = FALSE,
addlvariables = NULL, standardize
data = NULL, pair.dist = TRUE, un
improvement = TRUE, ...)

S3 method for class 'matchit.subclass'

summary(object, interactions = FALSE,
addlvariables = NULL, standardize = TRUE,
data = NULL, pair.dist = FALSE, subclass = FALSE,
un = TRUE, improvement = TRUE, ...)

TRUE,
TRUE,

S3 method for class 'summary.matchit'

print(x, digits = max(3, getOption("digits”) - 3),
S

S3 method for class 'summary.matchit.subclass'

print(x, digits = max(3, getOption("digits") - 3),
L)

Arguments

object a matchit object; the output of a call to matchit.

interactions logical; whether to compute balance statistics for two-way interactions
and squares of covariates. Default is FALSE.

addlvariables additional variable for which balance statistics are to be computed along
with the covariates in the matchit object. Can be entered in one of three
ways: as a data frame of covariates with as many rows as there were units
in the original matchit call, as a string containing the names of variables
in data, or as a right-sided formula with the additional variables (and
possibly their transformations) found in data, the environment, or the
matchit object. Balance on squares and interactions of the additional
variables will be included if interactions = TRUE.

standardize logical; whether to compute standardized (TRUE) or unstandardized (FALSE)
statistics. The standardized statistics are the standardized mean dif-
ference and the median, mean, and maximum of the difference in the
(weighted) empirical cumulative distribution functions (ECDFs). The
unstandardized statistics are the raw mean difference and the median,
mean, and maximum of the quantile-quantile (QQ) difference. See De-
tails below. Default is TRUE.

46

summary.matchit

data a optional data frame containing variables named in addlvariables if
specified as a string or formula.

pair.dist logical; whether to compute average absolute pair distances. For match-
ing methods that don’t include a match.matrix component in the output
(i.e., exact matching, coarsened exact matching, full matching, and sub-
classification), computing pair differences can take a long time, especially
for large datasets and with many covariates. For other methods (i.e.,
nearest neighbor, optimal, and genetic matching), computation is fairly
quick. Default is FALSE for subclassification and TRUE otherwise.

un logical; whether to compute balance statistics for the unmatched sample.
Default TRUE; set to FALSE for more concise output.

improvement logical; whether to compute the percent reduction in imbalance. Default
TRUE; set to FALSE for more concise output.

subclass after subclassification, whether to display balance for individual sub-
classes, and, if so, for which ones. Can be TRUE (display balance for all
subclasses), FALSE (display balance only in aggregate), or the indices (e.g.,
1:6) of the specific subclasses for which to display balance. When any-
thing other than FALSE, aggregate balance statistics will not be displayed.
Default is FALSE.

digits the number of digits to round balance statistics to.

X a summay.matchit or summary.matchit.subclass object; the output of a
call to summary.

ignored.

Details

summary computes a balance summary of a matchit object. This include balance before
and after matching or subclassification, as well as the percent improvement in balance.
The variables for which balance statistics are computed are those included in the formula,
exact, and mahvars arguments to matchit, as well as the distance measure if distance is
not "mahalanobis”. The X component of the matchit object is used to supply the covariates.

The standardized mean differences are computed both before and after matching or sub-
classification as the difference in treatment group means divided by a standardization factor
computed in the unmatched (original) sample. The standardization factor depends on the
argument supplied to estimand in matchit: for "ATT”, it is the standard deviation in the
treated group; for "ATC", it is the standard deviation in the control group; for "ATE", it
is the square root of the average of the variances within each treatment group. The post-
matching mean difference is computed with weighted means in the treatment groups using
the matching or subclassification weights.

The variance ratio is computed as the ratio of the treatment group variances. Variance
ratios are not computed for binary variables because their variance is a function solely of
their mean. After matching, weighted variances are computed using the formula used in
cov.wt. The percent reduction in bias is computed using the log of the variance ratios.

The eCDF difference statistics are computed by creating a (weighted) eCDF for each group
and taking the difference between them for each covariate value. The eCDF is a function
that outputs the (weighted) proportion of units with covariate values at or lower than the
input value. The maximum eCDF difference is the same thing as the Kolmogorov-Smirnov
statistic. The values are bounded at zero and one, with values closer to zero indicating
good overlap between the covariate distributions in the treated and control groups. For

summary.matchit 47

binary variables, all eCDF differences are equal to the (weighted) difference in proportion
and are computed that way.

The QQ difference statistics are computed by creating two samples of the same size by
interpolating the values of the larger one. The values are arranged in order for each sample.
The QQ difference for each quantile is the difference between the observed covariate values
at that quantile between the two groups. The difference is on the scale of the original
covariate. Values close to zero indicate good overlap between the covariate distributions
in the treated and control groups. A weighted interpolation is used for post-matching QQ
differences. For binary variables, all QQ differences are equal to the (weighted) difference
in proportion and are computed that way.

The pair distance is the average of the absolute differences of a variable between pairs.
For example, if a treated unit was paired with four control units, that set of units would
contribute four absolute differences to the average. Within a subclass, each combination
of treated and control unit forms a pair that contributes once to the average. The pair
distance is described in Stuart and Green (2008) and is the value that is minimized when
using optimal (full) matching. When standardize = TRUE, the standardized versions of the
variables are used, where the standardization factor is as described above for the standard-
ized mean differences. Pair distances are not computed in the unmatched sample (because
there are no pairs). Because pair distance can take a while to compute, especially with
large datasets or for many covariates, setting pair.dist = FALSE is one way to speed up
summary.

The effective sample size (ESS) is a measure of the size of a hypothetical unweighted
sample with roughly the same precision as a weighted sample. When non-uniform matching
weights are computed (e.g., as a result of full matching, matching with replacement, or
subclassification), the ESS can be used to quantify the potential precision remaining in
the matched sample. The ESS will always be less than or equal to the matched sample
size, reflecting the loss in precision due to using the weights. With non-uniform weights,
it is printed in the sample size table; otherwise, it is removed because it does not contain
additional information above the matched sample size.

After subclassification, the aggregate balance statistics are computed using the subclassifi-
cation weights rather than averaging across subclasses.

All balance statistics (except pair differences) are computed incorporating the sampling
weights supplied to matchit, if any. The unadjusted balance statistics include the sampling
weights and the adjusted balance statistics use the matching weights multiplied by the
sampling weights.

When printing, NA values are replaced with periods (.), and the pair distance column in
the unmatched and percent balance improvement components of the output are omitted.

Value
For matchit objects, a summary.matchit object, which is a list with the following compo-
nents:
call the original call to matchit
nn a matrix of the sample sizes in the original (unmatched) and matched
samples
sum.all if un = TRUE, a matrix of balance statistics for each covariate in the original

(unmatched) sample

sum.matched a matrix of balance statistics for each covariate in the matched sample

48

reduction

summary.matchit

if improvement = TRUE, a matrix of the percent reduction in imbalance for
each covariate in the matched sample

For match.subclass objects, a summary.matchit.subclass object, which is a list as above
with the following additional components:

call

sum.all

sum.subclass

sum.across

reduction

an
nn

See Also

the original call to matchit

if un = TRUE, a matrix of balance statistics for each covariate in the original
sample

if subclass is not FALSE, a list of matrices of balance statistics for each
subclass

a matrix of balance statistics for each covariate computed using the sub-
classification weights

if improvement = TRUE, a matrix of the percent reduction in imbalance for
each covariate in the matched sample

a matrix of sample sizes within each subclass

a matrix of the sample sizes in the original (unmatched) and matched
samples

summary for the generic method; plot.summary.matchit for making a Love plot from summary

output.

cobalt::bal.tab, which also displays balance for matchit objects.

Examples

data("lalonde")
m.out <- matchit(treat

age + educ + married +

race + re74, data = lalonde,
method = "nearest”, exact = ~ married,
replace = TRUE)

summary(m.out, interactions = TRUE)

s.out <- matchit(treat

age + educ + married +
race + nodegree + re74 + re75,
data = lalonde, method = "subclass")

summary(s.out, addlvariables = “log(age) + I(re74==0))
summary(s.out, subclass = TRUE)

	add_s.weights
	distance
	lalonde
	match.data
	matchit
	method_cem
	method_exact
	method_full
	method_genetic
	method_nearest
	method_optimal
	method_subclass
	plot.matchit
	plot.summary.matchit
	summary.matchit

